Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Epidemic patterns of antimicrobial resistance of Salmonella enterica serovar Gallinarum biovar Pullorum isolates in China during the past half-century.

  • Fan Sun‎ et al.
  • Poultry science‎
  • 2021‎

Pullorum is a chicken-specific systemic disease caused by Salmonella enterica serovar Gallinarum biovar Pullorum (S. Pullorum). This study was carried out to provide basic data for understanding the trends of S. Pullorum. A total of 652 S. Pullorum isolates collected in China during 1962-2019 were examined. Overall, 525 (80.5%) isolates were resistant to at least one antibiotic; 280 (42.9%) isolates resisted 3 or more classes of antibiotics and showed an increasing trend until 2015 and then decreased significantly. The most common multidrug-resistant pattern was ampicillin-tetracycline-nalidixic acid (13.6%). After 2008, 6 classes of antibiotic-resistant strains began to appear, and they have been prevalent ever since. In 2014, a strain resistant to 7 antibiotics (ampicillin-cefazolin-streptomycin-tetracycline-sulphonamides-nalidixic acid-nitrofurantoin) was isolated. The highest antimicrobial resistance was observed for nalidixic acid (71.9%), and the lowest was found for cefotaxime, meropenem, amikacin, gentamicin, fosfomycin, and polymyxin (0%). Our findings monitored the prevalence of the resistance of S. Pullorum during the past half-century in China. Continued surveillance of antimicrobial resistance and the rational use of antimicrobials is necessary and important to control the rapid increase in antimicrobial resistance in S. Pullorum.


Telomerase reverse transcriptase promotes the proliferation of human laryngeal carcinoma cells through activation of the activator protein 1.

  • Yang Jiang‎ et al.
  • Oncology letters‎
  • 2013‎

TERT is the main functional unit of telomerase, which maintains telomere length and chromosome structure stability. TERT has been shown to act as a key factor in various biological processes, such as cell proliferation, via uncharacterized mechanisms. We transfected HEp-2 laryngeal carcinoma cells with a TERT overexpressing adenovirus (Ad-TERT) and TERT shRNA silencing adenovirus (Ad-sh-TERT), and examined the effect on TERT and the AP-1 transcription factor subunits c-Fos and c-Jun using RT-PCR and western blot analysis. TERT mRNA expression was quantified using RT-PCR in 24 human laryngeal carcinoma samples, and TERT protein co-expression with AP-1 was investigated in a human laryngeal carcinoma tissue microarray using quantum-dot based immunofluorescence. The effect of specific ERK and p38 inhibitors on ERK, p38, c-Jun and c-Fos phosphorylation was investigated in TERT-overexpressing HEp-2 cells. TERT overexpression led to increased TERT, c-Jun and c-Fos mRNA and protein expression and increased cell proliferation, while TERT silencing had the opposite effects. TERT mRNA expression levels were positively correlated with c-Fos and c-Jun mRNA in human laryngeal carcinoma tissue. TERT and AP-1 protein were expressed at high levels and positively correlated in laryngeal carcinoma tissues. Treatment of TERT-overexpressing HEp-2 cells with specific p38 and ERK inhibitors indicated that TERT modulates the expression and phosphorylation of the AP-1 subunits c-Jun and c-Fos through the p38 and ERK signaling pathways. In conclusion, the results of this study indicate that TERT is capable of promoting cell proliferation via activation of the AP-1 subunits, c-Jun and c-Fos, in laryngeal carcinoma cells.


Identification and characterization of a novel Shigella flexneri serotype Yv in China.

  • Qiangzheng Sun‎ et al.
  • PloS one‎
  • 2013‎

Shigella flexneri is the major cause of bacterial shigellosis in developing countries. S. flexneri is divided into at least 19 serotypes, the majority of which are modifications of the same basic O-antigen by glucosylation and/or O-acetylation of its sugar residues by phage encoded serotype-converting genes. Recently, a plasmid encoded phosphoethanolamine (PEtN) modification of the O-antigen has been reported, which is responsible for the presence of the MASF IV-1 determinant and results in conversion of traditional serotypes X, 4a and Y to novel serotypes Xv, 4av and Yv, respectively. In this study, we characterized 19 serotype Yv strains isolated in China. A variant of the O-antigen phosphoethanolamine transferase gene opt (formerly called lpt-O) carried by a pSFxv_2-like plasmid was found in serotype Yv strains, which specifies the phosphorylation pattern on the O-antigen of this serotype. For the majority of the O-antigen units, the PEtN modification occurs on Rha(III), while for a minority, modifications occur on both Rha(II) and Rha(III). Serotype-specific gene detection and PFGE analysis suggested that these serotype Yv isolates were originated from serotypes Y, Xv and 2a by acquisition of an opt-carrying plasmid and/or inactivation of serotype-specific gene gtrII or gtrX. These data, combined with those of serotypes Xv and 4av reported earlier, demonstrate that the plasmid-encoded PEtN modification is an important serotype conversion mechanism in S. flexneri, in addition to glucosylation and O-acetylation.


Emergence of 16S rRNA Methylase Gene rmtB in Salmonella Enterica Serovar London and Evolution of RmtB-Producing Plasmid Mediated by IS26.

  • Jing Wang‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

This study aimed to characterize 16S rRNA methylase genes among Salmonella and to elucidate the structure and evolution of rmtB-carrying plasmids. One hundred fifty-eight Salmonella isolates from one pig slaughterhouse were detected as containing 16S rRNA methylase genes; two (1.27%) Salmonella London isolates from slaughtered pigs were identified to carry rmtB. They were resistant to gentamicin, amikacin, streptomycin, ampicillin, tetracycline, florfenicol, ciprofloxacin, and sulfamethoxazole/trimethoprim. The complete sequences of RmtB-producing isolates were obtained by PacBio single-molecule real-time sequencing. The isolate HA1-SP5 harbored plasmids pYUHAP5-1 and pYUHAP5-2. pYUHAP5-1 belonged to the IncFIBK plasmid and showed high similarity to multiple IncFIBK plasmids from Salmonella London in China. The rmtB-carrying plasmid pYUHAP5-2 contained a typical IncN-type backbone; the variable region comprising several resistance genes and an IncX1 plasmid segment was inserted in the resolvase gene resP and bounded by IS26. The sole plasmid in HA3-IN1 designated as pYUHAP1 was a cointegrate of plasmids from pYUHAP5-1-like and pYUHAP5-2-like, possibly mediated by IS26 via homologous recombination or conservative transposition. The structure differences between pYUHAP1 and its corresponding part of pYUHAP5-1 and pYUHAP5-2 may result from insertion, deletion, or recombination events mediated by mobile elements (IS26, ISCR1, and ISKpn43). This is the first report of rmtB in Salmonella London. IncN plasmids are efficient vectors for rmtB distribution and are capable of evolving by reorganization and cointegration. Our results further highlight the important role of mobile elements, particularly IS26, in the dissemination of resistance genes and plasmid evolution.


Myxococcus xanthus DK1622 Coordinates Expressions of the Duplicate groEL and Single groES Genes for Synergistic Functions of GroELs and GroES.

  • Li Zhuo‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

Chaperonin GroEL (Cpn60) requires cofactor GroES (Cpn10) for protein refolding in bacteria that possess single groEL and groES genes in a bicistronic groESL operon. Among 4,861 completely-sequenced prokaryotic genomes, 884 possess duplicate groEL genes and 770 possess groEL genes with no neighboring groES. It is unclear whether stand-alone groEL requires groES in order to function and, if required, how duplicate groEL genes and unequal groES genes balance their expressions. In Myxococcus xanthus DK1622, we determined that, while duplicate groELs were alternatively deletable, the single groES that clusters with groEL1 was essential for cell survival. Either GroEL1 or GroEL2 required interactions with GroES for in vitro and in vivo functions. Deletion of groEL1 or groEL2 resulted in decreased expressions of both groEL and groES; and ectopic complementation of groEL recovered not only the groEL but also groES expressions. The addition of an extra groES gene upstream groEL2 to form a bicistronic operon had almost no influence on groES expression and the cell survival rate, whereas over-expression of groES using a self-replicating plasmid simultaneously increased the groEL expressions. The results indicated that M. xanthus DK1622 cells coordinate expressions of the duplicate groEL and single groES genes for synergistic functions of GroELs and GroES. We proposed a potential regulation mechanism for the expression coordination.


Coexistence of bla OXA-58 and tet(X) on a Novel Plasmid in Acinetobacter sp. From Pig in Shanghai, China.

  • Jing Wang‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

The purpose of this study was to characterize the complete sequence of a novel plasmid carrying tigecycline resistance gene tet(X) and carbapenemase gene bla OXA-58 from a swine Acinetobacter sp. strain SH19PTT10. Minimal inhibitory concentration (MIC) was performed using microbroth dilution method. The isolate SH19PTT10 was highly resistant (16 mg/L) to tigecycline, and also exhibited resistance to ampicillin, streptomycin, tetracycline, chloramphenicol, florfenicol, ciprofloxacin, and sulfamethoxazole/trimethoprim. Although SH19PTT10 harbored bla OXA-58, it was susceptible to cefotaxime and meropenem. The genome sequence of SH19PTT10 was determined using PacBio single-molecule real-time sequencing. Plasmid pYUSHP10-1 had a size of 174,032 bp and showed partial homology to several plasmids found in Acinetobacter isolates. It contained two repA genes, putative toxin-antitoxin systems (HipA/HipB, RelE/RelB, and BrnT/BrnA), partitioning genes (parA and parB), and heavy metal resistance-associated genes (copA/copB, nrp, and czcA/czcD) but the transfer region or proteins was not found. pYUSHP10-1 carried 16 resistance genes, mainly clustered in two mosaic multiresistance regions (MRRs). The first MRR contained sul3, qacI-aadA1-clmA1-aadA2-blaCARB-2-dfrA16 cassette, aac(3)-IId, and bla OXA-58. The bla OXA-58 gene was associated with ISAba3, as previously described. The second MRR is the tet(X) region (ISAcsp12-aph(3')-Ia-IS26-ΔxerD-tet(X)-res-ISCR2-sul2) related to the corresponding region in other tet(X)-bearing plasmids. The pdif sites, as well as mobile elements, play an important role in mobilization of DNA modules and plasmid evolution. Coexistence of numerous resistance genes on a single plasmid may contribute to the dissemination of these genes under pressure posed by different agents, which may explain the presence of clinically crucial resistance genes tet(X) and bla OXA-58 in livestock. Thus, rational drug use and continued surveillance of tet(X) and bla OXA-58 in livestock are warranted.


Rapid Freezing Enables Aminoglycosides To Eradicate Bacterial Persisters via Enhancing Mechanosensitive Channel MscL-Mediated Antibiotic Uptake.

  • Yanna Zhao‎ et al.
  • mBio‎
  • 2020‎

Bacterial persisters exhibit noninherited antibiotic tolerance and are linked to the recalcitrance of bacterial infections. It is very urgent but also challenging to develop antipersister strategies. Here, we report that 10-s freezing with liquid nitrogen dramatically enhances the bactericidal action of aminoglycoside antibiotics by 2 to 6 orders of magnitude against many Gram-negative pathogens, with weaker potentiation effects on Gram-positive bacteria. In particular, antibiotic-tolerant Escherichia coli and Pseudomonas aeruginosa persisters-which were prepared by treating exponential-phase cells with ampicillin, ofloxacin, the protonophore cyanide m-chlorophenyl hydrazone (CCCP), or bacteriostatic antibiotics-can be effectively killed. We demonstrated, as a proof of concept, that freezing potentiated the aminoglycosides' killing of P. aeruginosa persisters in a mouse acute skin wound model. Mechanistically, freezing dramatically increased the bacterial uptake of aminoglycosides regardless of the presence of CCCP, indicating that the effects are independent of the proton motive force (PMF). In line with these results, we found that the effects were linked to freezing-induced cell membrane damage and were attributable, at least partly, to the mechanosensitive ion channel MscL, which was able to directly mediate such freezing-enhanced aminoglycoside uptake. In view of these results, we propose that the freezing-induced aminoglycoside potentiation is achieved by freezing-induced cell membrane destabilization, which, in turn, activates the MscL channel, which is able to effectively take up aminoglycosides in a PMF-independent manner. Our work may pave the way for the development of antipersister strategies that utilize the same mechanism as freezing but do so without causing any injury to animal cells.IMPORTANCE Antibiotics have long been used to successfully kill bacterial pathogens, but antibiotic resistance/tolerance usually has led to the failure of antibiotic therapy, and it has become a severe threat to human health. How to improve the efficacy of existing antibiotics is of importance for combating antibiotic-resistant/tolerant pathogens. Here, we report that 10-s rapid freezing with liquid nitrogen dramatically enhanced the bactericidal action of aminoglycoside antibiotics by 2 to 6 orders of magnitude against many bacterial pathogens in vitro and also in a mouse skin wound model. In particular, such combined treatment was able to effectively kill persister cells of Escherichia coli and Pseudomonas aeruginosa, which are per se tolerant of conventional treatment with bactericidal antibiotics for several hours. We also demonstrated that freezing-induced aminoglycoside potentiation was apparently linked to freezing-induced cell membrane damage that may have activated the mechanosensitive ion channel MscL, which, in turn, was able to effectively uptake aminoglycoside antibiotics in a proton motive force-independent manner. Our report sheds light on the development of a new strategy against bacterial pathogens by combining existing antibiotics with a conventional physical treatment or with MscL agonists.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: