Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 33 papers

Genetic research: who is at risk for alcoholism.

  • Tatiana Foroud‎ et al.
  • Alcohol research & health : the journal of the National Institute on Alcohol Abuse and Alcoholism‎
  • 2010‎

The National Institute on Alcohol Abuse and Alcoholism (NIAAA) was founded 40 years ago to help elucidate the biological underpinnings of alcohol dependence, including the potential contribution of genetic factors. Twin, adoption, and family studies conclusively demonstrated that genetic factors account for 50 to 60 percent of the variance in risk for developing alcoholism. Case-control studies and linkage analyses have helped identify DNA variants that contribute to increased risk, and the NIAAA-sponsored Collaborative Studies on Genetics of Alcoholism (COGA) has the expressed goal of identifying contributing genes using state-of-the-art genetic technologies. These efforts have ascertained several genes that may contribute to an increased risk of alcoholism, including certain variants encoding alcohol-metabolizing enzymes and neurotransmitter receptors. Genome-wide association studies allowing the analysis of millions of genetic markers located throughout the genome will enable discovery of further candidate genes. In addition to these human studies, genetic animal models of alcohol's effects and alcohol use have greatly advanced our understanding of the genetic basis of alcoholism, resulting in the identification of quantitative trait loci and allowing for targeted manipulation of candidate genes. Novel research approaches-for example, into epigenetic mechanisms of gene regulation-also are under way and undoubtedly will further clarify the genetic basis of alcoholism.


The Collaborative Study on the Genetics of Alcoholism: Overview.

  • Arpana Agrawal‎ et al.
  • Genes, brain, and behavior‎
  • 2023‎

Alcohol use disorders (AUD) are commonly occurring, heritable and polygenic disorders with etiological origins in the brain and the environment. To outline the causes and consequences of alcohol-related milestones, including AUD, and their related psychiatric comorbidities, the Collaborative Study on the Genetics of Alcoholism (COGA) was launched in 1989 with a gene-brain-behavior framework. COGA is a family based, diverse (~25% self-identified African American, ~52% female) sample, including data on 17,878 individuals, ages 7-97 years, in 2246 families of which a proportion are densely affected for AUD. All participants responded to questionnaires (e.g., personality) and the Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA) which gathers information on psychiatric diagnoses, conditions and related behaviors (e.g., parental monitoring). In addition, 9871 individuals have brain function data from electroencephalogram (EEG) recordings while 12,009 individuals have been genotyped on genome-wide association study (GWAS) arrays. A series of functional genomics studies examine the specific cellular and molecular mechanisms underlying AUD. This overview provides the framework for the development of COGA as a scientific resource in the past three decades, with individual reviews providing in-depth descriptions of data on and discoveries from behavioral and clinical, brain function, genetic and functional genomics data. The value of COGA also resides in its data sharing policies, its efforts to communicate scientific findings to the broader community via a project website and its potential to nurture early career investigators and to generate independent research that has broadened the impact of gene-brain-behavior research into AUD.


5. Collaborative Study on the Genetics of Alcoholism: Functional genomics.

  • Isabel Gameiro-Ros‎ et al.
  • Genes, brain, and behavior‎
  • 2023‎

Alcohol Use Disorder is a complex genetic disorder, involving genetic, neural, and environmental factors, and their interactions. The Collaborative Study on the Genetics of Alcoholism (COGA) has been investigating these factors and identified putative alcohol use disorder risk genes through genome-wide association studies. In this review, we describe advances made by COGA in elucidating the functional changes induced by alcohol use disorder risk genes using multimodal approaches with human cell lines and brain tissue. These studies involve investigating gene regulation in lymphoblastoid cells from COGA participants and in post-mortem brain tissues. High throughput reporter assays are being used to identify single nucleotide polymorphisms in which alternate alleles differ in driving gene expression. Specific single nucleotide polymorphisms (both coding or noncoding) have been modeled using induced pluripotent stem cells derived from COGA participants to evaluate the effects of genetic variants on transcriptomics, neuronal excitability, synaptic physiology, and the response to ethanol in human neurons from individuals with and without alcohol use disorder. We provide a perspective on future studies, such as using polygenic risk scores and populations of induced pluripotent stem cell-derived neurons to identify signaling pathways related with responses to alcohol. Starting with genes or loci associated with alcohol use disorder, COGA has demonstrated that integration of multimodal data within COGA participants and functional studies can reveal mechanisms linking genomic variants with alcohol use disorder, and potential targets for future treatments.


Analysis of whole genome-transcriptomic organization in brain to identify genes associated with alcoholism.

  • Manav Kapoor‎ et al.
  • Translational psychiatry‎
  • 2019‎

Alcohol exposure triggers changes in gene expression and biological pathways in human brain. We explored alterations in gene expression in the Pre-Frontal Cortex (PFC) of 65 alcoholics and 73 controls of European descent, and identified 129 genes that showed altered expression (FDR < 0.05) in subjects with alcohol dependence. Differentially expressed genes were enriched for pathways related to interferon signaling and Growth Arrest and DNA Damage-inducible 45 (GADD45) signaling. A coexpression module (thistle2) identified by weighted gene co-expression network analysis (WGCNA) was significantly correlated with alcohol dependence, alcohol consumption, and AUDIT scores. Genes in the thistle2 module were enriched with genes related to calcium signaling pathways and showed significant downregulation of these pathways, as well as enrichment for biological processes related to nicotine response and opioid signaling. A second module (brown4) showed significant upregulation of pathways related to immune signaling. Expression quantitative trait loci (eQTLs) for genes in the brown4 module were also enriched for genetic associations with alcohol dependence and alcohol consumption in large genome-wide studies included in the Psychiatric Genetic Consortium and the UK Biobank's alcohol consumption dataset. By leveraging multi-omics data, this transcriptome analysis has identified genes and biological pathways that could provide insight for identifying therapeutic targets for alcohol dependence.


Multi-omics integration analysis identifies novel genes for alcoholism with potential overlap with neurodegenerative diseases.

  • Manav Kapoor‎ et al.
  • Nature communications‎
  • 2021‎

Identification of causal variants and genes underlying genome-wide association study (GWAS) loci is essential to understand the biology of alcohol use disorder (AUD) and drinks per week (DPW). Multi-omics integration approaches have shown potential for fine mapping complex loci to obtain biological insights to disease mechanisms. In this study, we use multi-omics approaches, to fine-map AUD and DPW associations at single SNP resolution to demonstrate that rs56030824 on chromosome 11 significantly reduces SPI1 mRNA expression in myeloid cells and lowers risk for AUD and DPW. Our analysis also identifies MAPT as a candidate causal gene specifically associated with DPW. Genes prioritized in this study show overlap with causal genes associated with neurodegenerative disorders. Multi-omics integration analyses highlight, genetic similarities and differences between alcohol intake and disordered drinking, suggesting molecular heterogeneity that might inform future targeted functional and cross-species studies.


Multi-species data integration and gene ranking enrich significant results in an alcoholism genome-wide association study.

  • Zhongming Zhao‎ et al.
  • BMC genomics‎
  • 2012‎

A variety of species and experimental designs have been used to study genetic influences on alcohol dependence, ethanol response, and related traits. Integration of these heterogeneous data can be used to produce a ranked target gene list for additional investigation.


Associations Between Cannabis Use, Polygenic Liability for Schizophrenia, and Cannabis-related Experiences in a Sample of Cannabis Users.

  • Emma C Johnson‎ et al.
  • Schizophrenia bulletin‎
  • 2023‎

Risk for cannabis use and schizophrenia is influenced in part by genetic factors, and there is evidence that genetic risk for schizophrenia is associated with subclinical psychotic-like experiences (PLEs). Few studies to date have examined whether genetic risk for schizophrenia is associated with cannabis-related PLEs.


COVID-19 pandemic stressors are associated with reported increases in frequency of drunkenness among individuals with a history of alcohol use disorder.

  • Jacquelyn L Meyers‎ et al.
  • Translational psychiatry‎
  • 2023‎

Some sources report increases in alcohol use have been observed since the start of the COVID-19 pandemic, particularly among women. Cross-sectional studies suggest that specific COVID-19-related stressful experiences (e.g., social disconnection) may be driving such increases in the general population. Few studies have explored these topics among individuals with a history of Alcohol Use Disorders (AUD), an especially vulnerable population. Drawing on recent data collected by the Collaborative Study on the Genetics of Alcoholism (COGA; COVID-19 study N = 1651, 62% women, age range: 30-91) in conjunction with AUD history data collected on the sample since 1990, we investigated associations of COVID-19 related stressors and coping activities with changes in drunkenness frequency since the start of the pandemic. Analyses were conducted for those without a history of AUD (N: 645) and three groups of participants with a history of AUD prior to the start of the pandemic: (1) those experiencing AUD symptoms (N: 606), (2) those in remission who were drinking (N: 231), and (3) those in remission who were abstinent (had not consumed alcohol for 5+ years; N: 169). Gender-stratified models were also examined. Exploratory analyses examined the moderating effects of 'problematic alcohol use' polygenic risk scores (PRS) and neural connectivity (i.e., posterior interhemispheric alpha EEG coherence) on associations between COVID-19 stressors and coping activities with changes in the frequency of drunkenness. Increases in drunkenness frequency since the start of the pandemic were higher among those with a lifetime AUD diagnosis experiencing symptoms prior to the start of the pandemic (14% reported increased drunkenness) when compared to those without a history of AUD (5% reported increased drunkenness). Among individuals in remission from AUD prior to the start of the pandemic, rates of increased drunkenness were 10% for those who were drinking pre-pandemic and 4% for those who had previously been abstinent. Across all groups, women reported nominally greater increases in drunkenness frequency when compared with men, although only women experiencing pre-pandemic AUD symptoms reported significantly greater rates of increased drunkenness since the start of the pandemic compared to men in this group (17% of women vs. 5% of men). Among those without a prior history of AUD, associations between COVID-19 risk and protective factors with increases in drunkenness frequency were not observed. Among all groups with a history of AUD (including those with AUD symptoms and those remitted from AUD), perceived stress was associated with increases in drunkenness. Among the remitted-abstinent group, essential worker status was associated with increases in drunkenness. Gender differences in these associations were observed: among women in the remitted-abstinent group, essential worker status, perceived stress, media consumption, and decreased social interactions were associated with increases in drunkenness. Among men in the remitted-drinking group, perceived stress was associated with increases in drunkenness, and increased relationship quality was associated with decreases in drunkenness. Exploratory analyses indicated that associations between family illness or death with increases in drunkenness and increased relationship quality with decreases in drunkenness were more pronounced among the remitted-drinking participants with higher PRS. Associations between family illness or death, media consumption, and economic hardships with increases in drunkenness and healthy coping with decreases in drunkenness were more pronounced among the remitted-abstinent group with lower interhemispheric alpha EEG connectivity. Our results demonstrated that only individuals with pre-pandemic AUD symptoms reported greater increases in drunkenness frequency since the start of the COVID-19 pandemic compared to those without a lifetime history of AUD. This increase was more pronounced among women than men in this group. However, COVID-19-related stressors and coping activities were associated with changes in the frequency of drunkenness among all groups of participants with a prior history of AUD, including those experiencing AUD symptoms, as well as abstinent and non-abstinent participants in remission. Perceived stress, essential worker status, media consumption, social connections (especially for women), and relationship quality (especially for men) are specific areas of focus for designing intervention and prevention strategies aimed at reducing pandemic-related alcohol misuse among this particularly vulnerable group. Interestingly, these associations were not observed for individuals without a prior history of AUD, supporting prior literature that demonstrates that widespread stressors (e.g., pandemics, terrorist attacks) disproportionately impact the mental health and alcohol use of those with a prior history of problems.


Using polygenic scores for identifying individuals at increased risk of substance use disorders in clinical and population samples.

  • Peter B Barr‎ et al.
  • Translational psychiatry‎
  • 2020‎

Genome-wide, polygenic risk scores (PRS) have emerged as a useful way to characterize genetic liability. There is growing evidence that PRS may prove useful for early identification of those at increased risk for certain diseases. The current potential of PRS for alcohol use disorders (AUD) remains an open question. Using data from both a population-based sample [the FinnTwin12 (FT12) study] and a high-risk sample [the Collaborative Study on the Genetics of Alcoholism (COGA)], we examined the association between PRSs derived from genome-wide association studies (GWASs) of (1) alcohol dependence/alcohol problems, (2) alcohol consumption, and (3) risky behaviors with AUD and other substance use disorder (SUD) criteria. These PRSs explain ~2.5-3.5% of the variance in AUD (across FT12 and COGA) when all PRSs are included in the same model. Calculations of area under the curve (AUC) show PRS provide only a slight improvement over a model with age, sex, and ancestral principal components as covariates. While individuals in the top 20, 10, and 5% of the PRS distribution had greater odds of having an AUD compared to the lower end of the continuum in both COGA and FT12, the point estimates at each threshold were statistically indistinguishable. Those in the top 5% reported greater levels of licit (alcohol and nicotine) and illicit (cannabis and opioid) SUD criteria. PRSs are associated with risk for SUD in independent samples. However, usefulness for identifying those at increased risk in their current form is modest, at best. Improvement in predictive ability will likely be dependent on increasing the size of well-phenotyped discovery samples.


Diagnostic Criteria for Identifying Individuals at High Risk of Progression From Mild or Moderate to Severe Alcohol Use Disorder.

  • Alex P Miller‎ et al.
  • JAMA network open‎
  • 2023‎

Current Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) (DSM-5) diagnoses of substance use disorders rely on criterion count-based approaches, disregarding severity grading indexed by individual criteria.


Clinical, genomic, and neurophysiological correlates of lifetime suicide attempts among individuals with alcohol dependence.

  • Peter B Barr‎ et al.
  • medRxiv : the preprint server for health sciences‎
  • 2023‎

Research has identified clinical, genomic, and neurophysiological markers associated with suicide attempts (SA) among individuals with psychiatric illness. However, there is limited research among those with an alcohol use disorder, despite their disproportionately higher rates of SA. We examined lifetime SA in 4,068 individuals with DSM-IV alcohol dependence from the Collaborative Study on the Genetics of Alcoholism (23% lifetime suicide attempt; 53% female; 17% Admixed African American ancestries; mean age: 38). We 1) explored clinical risk factors associated with SA, 2) conducted a genome-wide association study of SA, 3) examined whether individuals with a SA had elevated polygenic scores for comorbid psychiatric conditions (e.g., alcohol use disorders, lifetime suicide attempt, and depression), and 4) explored differences in electroencephalogram neural functional connectivity between those with and without a SA. One gene-based finding emerged, RFX3 (Regulatory Factor X, located on 9p24.2) which had supporting evidence in prior research of SA among individuals with major depression. Only the polygenic score for suicide attempts was associated with reporting a suicide attempt (OR = 1.20, 95% CI = 1.06, 1.37). Lastly, we observed decreased right hemispheric frontal-parietal theta and decreased interhemispheric temporal-parietal alpha electroencephalogram resting-state coherences among those participants who reported a SA relative to those who did not, but differences were small. Overall, individuals with alcohol dependence who report SA appear to experience a variety of severe comorbidities and elevated polygenic risk for SA. Our results demonstrate the need to further investigate suicide attempts in the presence of substance use disorders.


Association Between Substance Use Disorder and Polygenic Liability to Schizophrenia.

  • Sarah M Hartz‎ et al.
  • Biological psychiatry‎
  • 2017‎

There are high levels of comorbidity between schizophrenia and substance use disorder, but little is known about the genetic etiology of this comorbidity.


Binge and high-intensity drinking-Associations with intravenous alcohol self-administration and underlying risk factors.

  • Martin H Plawecki‎ et al.
  • Addiction biology‎
  • 2022‎

Some styles of alcohol consumption are riskier than others. How the level and rate of alcohol exposure contribute to the increased risk of alcohol use disorder is unclear, but likely depends on the alcohol concentration time course. We hypothesized that the brain is sensitive to the alcohol concentration rate of change and that people at greater risk would self-administer faster. We developed a novel intravenous alcohol self-administration paradigm to allow participants direct and reproducible control over how quickly their breath alcohol concentration changes. We used drinking intensity and the density of biological family history of alcohol dependence as proxies for risk. Thirty-five alcohol drinking participants aged 21-28 years provided analytical data from a single, intravenous alcohol self-administration session using our computer-assisted alcohol infusion system rate control paradigm. A shorter time to reach 80 mg/dl was associated with increasing multiples of the binge drinking definition (p = 0.004), which was in turn related to higher density of family history of alcoholism (FHD, p = 0.04). Rate-dependent changes in subjective response (intoxication and stimulation) were also associated with FHD (each p = 0.001). Subsequently, given the limited sample size and FHD range, associations between multiples of the binge drinking definition and FHD were replicated and extended in analyses of the Collaborative Study on the Genetics of Alcoholism database. The rate control paradigm models binge and high-intensity drinking in the laboratory and provides a novel way to examine the relationship between the pharmacokinetics and pharmacodynamics of alcohol and potentially the risk for the development of alcohol use disorders.


Variations in GABRA2, encoding the alpha 2 subunit of the GABA(A) receptor, are associated with alcohol dependence and with brain oscillations.

  • Howard J Edenberg‎ et al.
  • American journal of human genetics‎
  • 2004‎

Alcoholism is a complex disease with both genetic and environmental risk factors. To identify genes that affect the risk for alcoholism, we systematically ascertained and carefully assessed individuals in families with multiple alcoholics. Linkage and association analyses suggested that a region of chromosome 4p contained genes affecting a quantitative endophenotype, brain oscillations in the beta frequency range (13-28 Hz), and the risk for alcoholism. To identify the individual genes that affect these phenotypes, we performed linkage disequilibrium analyses of 69 single-nucleotide polymorphism (SNPs) within a cluster of four GABA(A) receptor genes, GABRG1, GABRA2, GABRA4, and GABRB1, at the center of the linked region. GABA(A) receptors mediate important effects of alcohol and also modulate beta frequencies. Thirty-one SNPs in GABRA2, but only 1 of the 20 SNPs in the flanking genes, showed significant association with alcoholism. Twenty-five of the GABRA2 SNPs, but only one of the SNPs in the flanking genes, were associated with the brain oscillations in the beta frequency. The region of strongest association with alcohol dependence extended from intron 3 past the 3' end of GABRA2; all 43 of the consecutive three-SNP haplotypes in this region of GABRA2 were highly significant. A three-SNP haplotype was associated with alcoholism, with P=.000000022. No coding differences were found between the high-risk and low-risk haplotypes, suggesting that the effect is mediated through gene regulation. The very strong association of GABRA2 with both alcohol dependence and the beta frequency of the electroencephalogram, combined with biological evidence for a role of this gene in both phenotypes, suggest that GABRA2 might influence susceptibility to alcohol dependence by modulating the level of neural excitation.


Psychosocial moderation of polygenic risk for cannabis involvement: the role of trauma exposure and frequency of religious service attendance.

  • Jacquelyn L Meyers‎ et al.
  • Translational psychiatry‎
  • 2019‎

Cannabis use and disorders (CUD) are influenced by multiple genetic variants of small effect and by the psychosocial environment. However, this information has not been effectively incorporated into studies of gene-environment interaction (GxE). Polygenic risk scores (PRS) that aggregate the effects of genetic variants can aid in identifying the links between genetic risk and psychosocial factors. Using data from the Pasman et al. GWAS of cannabis use (meta-analysis of data from the International Cannabis Consortium and UK Biobank), we constructed PRS in the Collaborative Study on the Genetics of Alcoholism (COGA) participants of European (N: 7591) and African (N: 3359) ancestry. The primary analyses included only individuals of European ancestry, reflecting the ancestral composition of the discovery GWAS from which the PRS was derived. Secondary analyses included the African ancestry sample. Associations of PRS with cannabis use and DSM-5 CUD symptom count (CUDsx) and interactions with trauma exposure and frequency of religious service attendance were examined. Models were adjusted for sex, birth cohort, genotype array, and ancestry. Robustness models were adjusted for cross-term interactions. Higher PRS were associated with a greater likelihood of cannabis use and with CUDsx among participants of European ancestry (p < 0.05 and p < 0.1 thresholds, respectively). PRS only influenced cannabis use among those exposed to trauma (R2: 0.011 among the trauma exposed vs. R2: 0.002 in unexposed). PRS less consistently influenced cannabis use among those who attend religious services less frequently; PRS × religious service attendance effects were attenuated when cross-term interactions with ancestry and sex were included in the model. Polygenic liability to cannabis use was related to cannabis use and, less robustly, progression to symptoms of CUD. This study provides the first evidence of PRS × trauma for cannabis use and demonstrates that ignoring important aspects of the psychosocial environment may mask genetic influences on polygenic traits.


Assessing the genetic risk for alcohol use disorders.

  • Tatiana Foroud‎ et al.
  • Alcohol research : current reviews‎
  • 2012‎

The past two decades have witnessed a revolution in the field of genetics which has led to a rapid evolution in the tools and techniques available for mapping genes that contribute to genetically complex disorders such as alcohol dependence. Research in humans and in animal models of human disease has provided important new information. Among the most commonly applied approaches used in human studies are family studies, case-control studies, and genome-wide association studies. Animal models have been aimed at identifying genetic regions or individual genes involved in different aspects of alcoholism, using such approaches as quantitative trait locus analysis, genome sequencing, knockout animals, and other sophisticated molecular genetic techniques. All of these approaches have led to the identification of several genes that seem to influence the risk for alcohol dependence, which are being further analyzed. Newer studies, however, also are attempting to look at the genetic basis of alcoholism at the level of the entire genome, moving beyond the study of individual genes toward analyses of gene interactions and gene networks in the development of this devastating disease.


Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci.

  • A Mesut Erzurumluoglu‎ et al.
  • Molecular psychiatry‎
  • 2020‎

Smoking is a major heritable and modifiable risk factor for many diseases, including cancer, common respiratory disorders and cardiovascular diseases. Fourteen genetic loci have previously been associated with smoking behaviour-related traits. We tested up to 235,116 single nucleotide variants (SNVs) on the exome-array for association with smoking initiation, cigarettes per day, pack-years, and smoking cessation in a fixed effects meta-analysis of up to 61 studies (up to 346,813 participants). In a subset of 112,811 participants, a further one million SNVs were also genotyped and tested for association with the four smoking behaviour traits. SNV-trait associations with P < 5 × 10-8 in either analysis were taken forward for replication in up to 275,596 independent participants from UK Biobank. Lastly, a meta-analysis of the discovery and replication studies was performed. Sixteen SNVs were associated with at least one of the smoking behaviour traits (P < 5 × 10-8) in the discovery samples. Ten novel SNVs, including rs12616219 near TMEM182, were followed-up and five of them (rs462779 in REV3L, rs12780116 in CNNM2, rs1190736 in GPR101, rs11539157 in PJA1, and rs12616219 near TMEM182) replicated at a Bonferroni significance threshold (P < 4.5 × 10-3) with consistent direction of effect. A further 35 SNVs were associated with smoking behaviour traits in the discovery plus replication meta-analysis (up to 622,409 participants) including a rare SNV, rs150493199, in CCDC141 and two low-frequency SNVs in CEP350 and HDGFRP2. Functional follow-up implied that decreased expression of REV3L may lower the probability of smoking initiation. The novel loci will facilitate understanding the genetic aetiology of smoking behaviour and may lead to the identification of potential drug targets for smoking prevention and/or cessation.


Dosage transmission disequilibrium test (dTDT) for linkage and association detection.

  • Zhehao Zhang‎ et al.
  • PloS one‎
  • 2013‎

Both linkage and association studies have been successfully applied to identify disease susceptibility genes with genetic markers such as microsatellites and Single Nucleotide Polymorphisms (SNPs). As one of the traditional family-based studies, the Transmission/Disequilibrium Test (TDT) measures the over-transmission of an allele in a trio from its heterozygous parents to the affected offspring and can be potentially useful to identify genetic determinants for complex disorders. However, there is reduced information when complete trio information is unavailable. In this study, we developed a novel approach to "infer" the transmission of SNPs by combining both the linkage and association data, which uses microsatellite markers from families informative for linkage together with SNP markers from the offspring who are genotyped for both linkage and a Genome-Wide Association Study (GWAS). We generalized the traditional TDT to process these inferred dosage probabilities, which we name as the dosage-TDT (dTDT). For evaluation purpose, we developed a simulation procedure to assess its operating characteristics. We applied the dTDT to the simulated data and documented the power of the dTDT under a number of different realistic scenarios. Finally, we applied our methods to a family study of alcohol dependence (COGA) and performed individual genotyping on complete families for the top signals. One SNP (rs4903712 on chromosome 14) remained significant after correcting for multiple testing Methods developed in this study can be adapted to other platforms and will have widespread applicability in genomic research when case-control GWAS data are collected in families with existing linkage data.


Association of Polygenic Liability for Alcohol Dependence and EEG Connectivity in Adolescence and Young Adulthood.

  • Jacquelyn L Meyers‎ et al.
  • Brain sciences‎
  • 2019‎

Differences in the connectivity of large-scale functional brain networks among individuals with alcohol use disorders (AUD), as well as those at risk for AUD, point to dysfunctional neural communication and related cognitive impairments. In this study, we examined how polygenic risk scores (PRS), derived from a recent GWAS of DSM-IV Alcohol Dependence (AD) conducted by the Psychiatric Genomics Consortium, relate to longitudinal measures of interhemispheric and intrahemispheric EEG connectivity (alpha, theta, and beta frequencies) in adolescent and young adult offspring from the Collaborative Study on the Genetics of Alcoholism (COGA) assessed between ages 12 and 31. Our findings indicate that AD PRS (p-threshold < 0.001) was associated with increased fronto-central, tempo-parietal, centro-parietal, and parietal-occipital interhemispheric theta and alpha connectivity in males only from ages 18-31 (beta coefficients ranged from 0.02-0.06, p-values ranged from 10-6-10-12), but not in females. Individuals with higher AD PRS also demonstrated more performance deficits on neuropsychological tasks (Tower of London task, visual span test) as well as increased risk for lifetime DSM-5 alcohol and opioid use disorders. We conclude that measures of neural connectivity, together with neurocognitive performance and substance use behavior, can be used to further understanding of how genetic risk variants from large GWAS of AUD may influence brain function. In addition, these data indicate the importance of examining sex and developmental effects, which otherwise may be masked. Understanding of neural mechanisms linking genetic variants emerging from GWAS to risk for AUD throughout development may help to identify specific points when neurocognitive prevention and intervention efforts may be most effective.


Stress-response pathways are altered in the hippocampus of chronic alcoholics.

  • Jeanette N McClintick‎ et al.
  • Alcohol (Fayetteville, N.Y.)‎
  • 2013‎

The chronic high-level alcohol consumption seen in alcoholism leads to dramatic effects on the hippocampus, including decreased white matter, loss of oligodendrocytes and other glial cells, and inhibition of neurogenesis. Examining gene expression in post mortem hippocampal tissue from 20 alcoholics and 19 controls allowed us to detect differentially expressed genes that may play a role in the risk for alcoholism or whose expression is modified by chronic consumption of alcohol. We identified 639 named genes whose expression significantly differed between alcoholics and controls at a False Discovery Rate (FDR) ≤ 0.20; 52% of these genes differed by at least 1.2-fold. Differentially expressed genes included the glucocorticoid receptor and the related gene FK506 binding protein 5 (FKBP5), UDP glycosyltransferase 8 (UGT8), urea transporter (SLC14A1), zinc transporter (SLC39A10), Interleukin 1 receptor type 1 (IL1R1), thioredoxin interacting protein (TXNIP), and many metallothioneins. Pathways related to inflammation, hypoxia, and stress showed activation, and pathways that play roles in neurogenesis and myelination showed decreases. The cortisol pathway dysregulation and increased inflammation identified here are seen in other stress-related conditions such as depression and post-traumatic stress disorder and most likely play a role in addiction. Many of the detrimental effects on the hippocampus appear to be mediated through NF-κB signaling. Twenty-four of the differentially regulated genes were previously identified by genome-wide association studies of alcohol use disorders; this raises the potential interest of genes not normally associated with alcoholism, such as suppression of tumorigenicity 18 (ST18), BCL2-associated athanogene 3 (BAG3), and von Willebrand factor (VWF).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: