Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Lin28a induces SOX9 and chondrocyte reprogramming via HMGA2 and blunts cartilage loss in mice.

  • Yohan Jouan‎ et al.
  • Science advances‎
  • 2022‎

Articular cartilage has low regenerative capacity despite permanent stress. Irreversible cartilage lesions characterize osteoarthritis (OA); this is not followed by tissue repair. Lin28a, an RNA binding protein, is detected in damaged cartilage in humans and mice. We investigated the role of LIN28a in cartilage physiology and in osteoarthritis. Lin28a-inducible conditional cartilage deletion up-regulated Mmp13 in intact mice and exacerbated the cartilage destruction in OA mice. Lin28a-specific cartilage overexpression protected mice against cartilage breakdown, stimulated chondrocyte proliferation and the expression of Prg4 and Sox9, and down-regulated Mmp13. Lin28a overexpression inhibited Let-7b and Let-7c miRNA levels while RNA-sequencing analysis revealed five genes of transcriptional factors regulated by Let-7. Moreover, Lin28a overexpression up-regulated HMGA2 and activated SOX9 transcription, a factor required for chondrocyte reprogramming. HMGA2 siRNA knockdown inhibited the cartilage protective effect of Lin28a overexpression. This study provides insights into a new pathway including the Lin28a-Let7 axis, thus promoting chondrocyte anabolism in injured cartilage in mice.


High-impact FN1 mutation decreases chondrogenic potential and affects cartilage deposition via decreased binding to collagen type II.

  • Marcella van Hoolwerff‎ et al.
  • Science advances‎
  • 2021‎

Osteoarthritis is the most prevalent joint disease worldwide, yet progress in development of effective disease-modifying treatments is slow because of lack of insight into the underlying disease pathways. Therefore, we aimed to identify the causal pathogenic mutation in an early-onset osteoarthritis family, followed by functional studies in human induced pluripotent stem cells (hiPSCs) in an in vitro organoid cartilage model. We demonstrated that the identified causal missense mutation in the gelatin-binding domain of the extracellular matrix protein fibronectin resulted in significant decreased binding capacity to collagen type II. Further analyses of formed hiPSC-derived neo-cartilage tissue highlighted that mutated fibronectin affected chondrogenic capacity and propensity to a procatabolic osteoarthritic state. Together, we demonstrate that binding of fibronectin to collagen type II is crucial for fibronectin downstream gene expression of chondrocytes. We advocate that effective treatment development should focus on restoring or maintaining proper binding between fibronectin and collagen type II.


A multistage assembly/disassembly strategy for tumor-targeted CO delivery.

  • Jin Meng‎ et al.
  • Science advances‎
  • 2020‎

CO gas molecule not only could selectively kill cancer cells but also exhibits limited anticancer efficacy because of the lack of active tumor-targeted accumulation capability. In this work, a multistage assembly/disassembly strategy is developed to construct a new intelligent nanomedicine by encapsulating a mitochondria-targeted and intramitochondrial microenvironment-responsive prodrug (FeCO-TPP) within mesoporous silica nanoparticle that is further coated with hyaluronic acid by step-by-step electrostatic assembly, realizing tumor tissue-cell-mitochondria-targeted multistage delivery and controlled release of CO in a step-by-step disassembly way. Multistage targeted delivery and controlled release of CO involve (i) the passive tumor tissue-targeted nanomedicine delivery, (ii) the active tumor cell-targeted nanomedicine delivery, (iii) the acid-responsive prodrug release, (iv) the mitochondria-targeted prodrug delivery, and (v) the ROS-responsive CO release. The developed nanomedicine has effectively augmented the efficacy and safety of CO therapy of cancer both in vitro and in vivo. The proposed multistage assembly/disassembly strategy opens a new window for targeted CO therapy.


Regulation of body length and bone mass by Gpr126/Adgrg6.

  • Peng Sun‎ et al.
  • Science advances‎
  • 2020‎

Adhesion G protein-coupled receptor G6 (Adgrg6; also named GPR126) single-nucleotide polymorphisms are associated with human height in multiple populations. However, whether and how GPR126 regulates body height is unknown. In this study, we found that mouse body length was specifically decreased in Osx-Cre;Gpr126fl/fl mice. Deletion of Gpr126 in osteoblasts resulted in a remarkable delay in osteoblast differentiation and mineralization during embryonic bone formation. Postnatal bone formation, bone mass, and bone strength were also significantly affected in Gpr126 osteoblast deletion mice because of defects in osteoblast proliferation, differentiation, and ossification. Furthermore, type IV collagen functioned as an activating ligand of Gpr126 to regulate osteoblast differentiation and function by stimulating cAMP signaling. Moreover,the cAMP activator PTH(1-34), could partially restore the inhibition of osteoblast differentiation and the body length phenotype induced by Gpr126 deletion.Together, our results demonstrated that COLIV-Gpr126 regulated body length and bone mass through cAMP-CREB signaling pathway.


Conversion of mouse embryonic fibroblasts into neural crest cells and functional corneal endothelia by defined small molecules.

  • Shao-Hui Pan‎ et al.
  • Science advances‎
  • 2021‎

Reprogramming of somatic cells into desired functional cell types by small molecules has vast potential for developing cell replacement therapy. Here, we developed a stepwise strategy to generate chemically induced neural crest cells (ciNCCs) and chemically induced corneal endothelial cells (ciCECs) from mouse fibroblasts using defined small molecules. The ciNCCs exhibited typical NCC features and could differentiate into ciCECs using another chemical combination in vitro. The resulting ciCECs showed consistent gene expression profiles and self-renewal capacity to those of primary CECs. Notably, these ciCECs could be cultured for as long as 30 passages and still retain the CEC features in defined medium. Transplantation of these ciCECs into an animal model reversed corneal opacity. Our chemical approach for direct reprogramming of mouse fibroblasts into ciNCCs and ciCECs provides an alternative cell source for regeneration of corneal endothelia and other tissues derived from neural crest.


Gastrointestinal transcription factors drive lineage-specific developmental programs in organ specification and cancer.

  • Roshane Francis‎ et al.
  • Science advances‎
  • 2019‎

Transcription factors (TFs) are spatially and temporally regulated during gut organ specification. Although accumulating evidence shows aberrant reactivation of developmental programs in cancer, little is known about how TFs drive lineage specification in development and cancer. We first defined gastrointestinal tissue-specific chromatin accessibility and gene expression during development, identifying the dynamic epigenetic regulation of SOX family of TFs. We revealed that Sox2 is not only essential for gastric specification, by maintaining chromatin accessibility at forestomach lineage loci, but also sufficient to promote forestomach/esophageal transformation upon Cdx2 deletion. By comparing our gastrointestinal lineage-specific transcriptome to human gastrointestinal cancer data, we found that stomach and intestinal lineage-specific programs are reactivated in Sox2high /Sox9high and Cdx2high cancers, respectively. By analyzing mice deleted for both Sox2 and Sox9, we revealed their potentially redundant roles in both gastric development and cancer, highlighting the importance of developmental lineage programs reactivated by gastrointestinal TFs in cancer.


A towering genome: Experimentally validated adaptations to high blood pressure and extreme stature in the giraffe.

  • Chang Liu‎ et al.
  • Science advances‎
  • 2021‎

The suite of adaptations associated with the extreme stature of the giraffe has long interested biologists and physiologists. By generating a high-quality chromosome-level giraffe genome and a comprehensive comparison with other ruminant genomes, we identified a robust catalog of giraffe-specific mutations. These are primarily related to cardiovascular, bone growth, vision, hearing, and circadian functions. Among them, the giraffe FGFRL1 gene is an outlier with seven unique amino acid substitutions not found in any other ruminant. Gene-edited mice with the giraffe-type FGFRL1 show exceptional hypertension resistance and higher bone mineral density, both of which are tightly connected with giraffe adaptations to high stature. Our results facilitate a deeper understanding of the molecular mechanism underpinning distinct giraffe traits, and may provide insights into the study of hypertension in humans.


CTRP3 exacerbates tendinopathy by dysregulating tendon stem cell differentiation and altering extracellular matrix composition.

  • Yongsik Cho‎ et al.
  • Science advances‎
  • 2021‎

Tendinopathy, the most common disorder affecting tendons, is characterized by chronic disorganization of the tendon matrix, which leads to tendon tear and rupture. The goal was to identify a rational molecular target whose blockade can serve as a potential therapeutic intervention for tendinopathy. We identified C1q/TNF-related protein-3 (CTRP3) as a markedly up-regulated cytokine in human and rodent tendinopathy. Overexpression of CTRP3 enhanced the progression of tendinopathy by accumulating cartilaginous proteoglycans and degenerating collagenous fibers in the mouse tendon, whereas CTRP3 knockdown suppressed the tendinopathy pathogenesis. Functional blockade of CTRP3 using a neutralizing antibody ameliorated overuse-induced tendinopathy of the Achilles and rotator cuff tendons. Mechanistically, CTRP3 elicited a transcriptomic pattern that stimulates abnormal differentiation of tendon stem/progenitor cells and ectopic chondrification as an effect linked to activation of Akt signaling. Collectively, we reveal an essential role for CTRP3 in tendinopathy and propose a potential therapeutic strategy for the treatment of tendinopathy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: