Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Compatibility of Isaria fumosorosea (Hypocreales: Cordycipitaceae) Blastospores with Agricultural Chemicals Used for Management of the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae).

  • Pasco B Avery‎ et al.
  • Insects‎
  • 2013‎

Biorational insecticides are being increasingly emphasized for inclusion in integrated pest management programs for invasive insects. The entomopathogenic fungus, Isaria fumosorosea, can be used to help manage the Asian citrus psyllid with minimal impact on beneficial arthropods, but its effectiveness may be compromised by agrochemicals used to control concurrent arthropod pests and diseases. We evaluated the compatibility of I. fumosorosea blastospores with a range of spray oils and copper-based fungicides registered for use in citrus groves. Results of laboratory and greenhouse tests showed a range of responses of the fungus to the different materials, including compatibility and incompatibility. Overall, I. fumosorosea growth in vitro was reduced least by petroleum-based materials and most by botanical oils and borax, and some of the copper-based fungicides, suggesting that tank mixing of I. fumosorosea with these latter products should be avoided. However, equivalent negative effects of test materials on fungal pathogenicity were not always observed in tests with adult psyllids. We hypothesize that some oils enhanced adherence of blastospores to the insect cuticle, overcoming negative impacts on germination. Our data show that care should be taken in selecting appropriate agrochemicals for tank-mixing with commercial formulations of entomopathogenic fungi for management of citrus pests. The prospects of using I. fumosorosea for managing the invasive Asian citrus psyllid and other citrus pests are discussed.


Evaluation of Ethanol Extract of Moringa oleifera Lam. as Acaricide against Oligonychus punicae Hirst (Trombidiformes: Tetranychidae).

  • Rapucel Tonantzin Quetzalli Heinz-Castro‎ et al.
  • Insects‎
  • 2021‎

Tetranychidae family is a major group of mites causing serious damage in agricultural, vegetable and ornamental crops. Avocado bronze mite (ABM), Oligonychus punicae Hirst (Acari: Tetranychidae) causes major crop damage, defoliation and fruit abortion. At present, the control of this mite depends mainly on agrochemicals. Therefore it is necessary to find alternatives to synthetic pesticides that can help minimize environmental impact and health risks for the consumers. The aim of this research was to assess the effect of different concentrations (0.1, 0.5, 1, 5, 10, 15 and 20% (v/v)) of ethanolic extract of Moringa oleifera leaves against adult ABM females. Mites treated with 0.1 and 20% (v/v) of the extract showed mortality of 0.00% and 46.67%, 6.67% and 86.67%, 13.70% and 96.67%, at 24, 48 and 72 h, as compared to the control treatment, respectively. The number of eggs laid and hatch, as well as ABM feeding rates, depended on the extract concentration, which led to a reduction in the growth rate. M. oleifera leaf ethanolic extract has potential to control O. punicae.


A Novel Reference for Bt-Resistance Mechanism in Plutella xylostella Based on Analysis of the Midgut Transcriptomes.

  • Lei Xiong‎ et al.
  • Insects‎
  • 2021‎

The diamondback moth, Plutella xylostella, is a lepidopteran insect that mainly harms cruciferous vegetables, with strong resistance to a variety of agrochemicals, including Bacillus thuringiensis (Bt) toxins. This study intended to screen genes associated with Bt resistance in P. xylostella by comparing the midgut transcriptome of Cry1Ac-susceptible and -resistant strains together with two toxin-treated strains 24 h before sampling. A total of 12 samples were analyzed by BGISEQ-500, and each sample obtained an average of 6.35 Gb data. Additionally, 3284 differentially expressed genes (DEGs) were identified in susceptible and resistant strains. Among them, five DEGs for cadherin, 14 for aminopeptidase, zero for alkaline phosphatase, 14 for ATP binding cassette transport, and five heat shock proteins were potentially involved in resistance to Cry1Ac in P. xylostella. Furthermore, DEGs associated with "binding", "catalytic activity", "cellular process", "metabolic process", and "cellular anatomical entity" were more likely to be responsible for resistance to Bt toxin. Thus, together with other omics data, our results will offer prospective genes for the development of Bt resistance, thereby providing a brand new reference for revealing the resistance mechanism to Bt of P. xylostella.


Heterocyclic Amine-Induced Feeding Deterrence and Antennal Response of Honey Bees.

  • Nicholas R Larson‎ et al.
  • Insects‎
  • 2021‎

The productivity and survival of managed honey bee colonies is negatively impacted by a diverse array of interacting factors, including exposure to agrochemicals, such as pesticides. This study investigated the use of volatile heterocyclic amine (HCA) compounds as potential short-term repellents that could be employed as feeding deterrents to reduce the exposure of bees to pesticide-treated plants. Parent and substituted HCAs were screened for efficacy relative to the repellent N,N-diethyl-meta-toluamide (DEET) in laboratory and field experiments. Additionally, electroantennogram (EAG) recordings were conducted to determine the level of antennal response in bees. In video-tracking recordings, bees were observed to spend significantly less time with an HCA-treated food source than an untreated source. In a high-tunnel experiment, the HCA piperidine was incorporated in a feeding station and found to significantly reduce bee visitations relative to an untreated feeder. In field experiments, bee visitations were significantly reduced on melon flowers (Cucumis melo L.) and flowering knapweed (Centaurea stoebe L.) that were sprayed with a piperidine solution, relative to untreated plants. In EAG recordings, the HCAs elicited antennal responses that were significantly different from control or vehicle responses. Overall, this study provides evidence that HCAs can deter individual bees from food sources and suggests that this deterrence is the result of antennal olfactory detection. These findings warrant further study into structure-activity relationships that could lead to the development of short-term repellent compounds that are effective deterrents to reduce the contact of bees to pesticide-treated plants.


The Insecticide Imidacloprid Decreases Nannotrigona Stingless Bee Survival and Food Consumption and Modulates the Expression of Detoxification and Immune-Related Genes.

  • Yahya Al Naggar‎ et al.
  • Insects‎
  • 2022‎

Stingless bees are ecologically and economically important species in the tropics and subtropics, but there has been little research on the characterization of detoxification systems and immune responses within them. This is critical for understanding their responses to, and defenses against, a variety of environmental stresses, including agrochemicals. Therefore, we studied the detoxification and immune responses of a stingless bee, Nanotrigona perilampoides, which is an important stingless bee that is widely distributed throughout Mexico, including urban areas, and has the potential to be used in commercial pollination. We first determined the LC50 of the neonicotinoid insecticide imidacloprid for foragers of N. perilampoides, then chronically exposed bees for 10 days to imidacloprid at two field-realistic concentrations, LC10 (0.45 ng/µL) or LC20 (0.74 ng/µL), which are respectively 2.7 and 1.3-fold lower than the residues of imidacloprid that have been found in honey (6 ng/g) in central Mexico. We found that exposing N. perilampoides stingless bees to imidacloprid at these concentrations markedly reduced bee survival and food consumption, revealing the great sensitivity of this stingless bee to the insecticide in comparison to honey bees. The expression of detoxification (GSTD1) and immune-related genes (abaecin, defensin1, and hymenopteacin) in N. perilampoides also changed over time in response to imidacloprid. Gene expression was always lower in bees after 8 days of exposure to imidacloprid (LC10 or LC20) than it was after 4 days. Our results demonstrate that N. perilampoides stingless bees are extremely sensitive to imidacloprid, even at low concentrations, and provide greater insight into how stingless bees respond to pesticide toxicity. This is the first study of its kind to look at detoxification systems and immune responses in Mexican stingless bees, an ecologically and economically important taxon.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: