Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

In Vitro Wound-Healing Properties of Water-Soluble Terpenoids Loaded on Halloysite Clay.

  • Lisa Marinelli‎ et al.
  • Pharmaceutics‎
  • 2021‎

Recently, mineral healing clays have gained much attention for wound-dressing applications. Here, we selected halloysite (HAL) clay as a biocompatible, non-toxic material that is useful as a drug delivery system to enhance the healing properties of water-soluble terpenoids 1-3 (T1-3). Terpenoids-loaded HAL clay (TH1-3) was prepared and characterized by adsorption equilibrium studies, X-ray powder diffraction (XRPD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, and release studies. The results reveal that T1-3 were adsorbed at the HAL surface with good efficiency. The prevalent mechanism of drug retention is due to the adsorption via electrostatic interactions between the cationic groups of the T1-3 and the HAL's external surface. Release studies demonstrated that T3 was released in a higher percentage (>60%) compared to T1-2 (≈50%). Additionally, TH1-3 were assessed for their antimicrobial activity and capability to promote the re-epithelialization of scratched HaCat monolayers, through the time-kill test and the wound-healing assays, respectively. The results reveal that all the tested formulations were able to reduce the microbial growth after 1 h of incubation and that they ensured complete wound closure after 48 h. Furthermore, at the concentration of 1 µg/mL, TH3 exhibited 45% wound closure at 24 h, compared to TH1 (27%) and TH2 (30%), proving to be the best candidate in making the tissue-repair process easier and faster.


Experimental and Computational Study for the Design of Sulfathiazole Dosage Form with Clay Mineral.

  • Eugenia Moreno-Domínguez‎ et al.
  • Pharmaceutics‎
  • 2023‎

Sulfathiazole is an antimicrobial belonging to the family of sulfonamides, which were the first antibiotics to be discovered. Sulfathiazole is generally administered orally, and its main disadvantage is that it has low aqueous solubility, requiring high doses for its administration. This fact has led to side effects and the generation of bacterial resistance to the drug over time. The improvement of its solubility would mean not having to administer such high doses in its treatment. At the same time, montmorillonite is a natural, low-cost, non-toxic, biocompatible clay with a high adsorption capacity. It is potentially useful as a nanocarrier to design sulfathiazole dosage forms. In this work, the interaction between the drug and the clay mineral has been studied from an experimental and computational atomistic point of view to improve the drug's biopharmaceutical profile. The results showed the potential enhancement of the drug solubility due to the correct adsorption of the sulfathiazole in the clay interlayer space. As a result of the inclusion of sulfathiazole in the interlayer of the clay mineral, the solubility of the drug increased by 220% concerning the pristine drug. Experimentally, it was not possible to know the number of drug molecules adsorbed in the interlayer space or the external surface of the carrier. Theoretical studies will enable the knowledge of the stoichiometry of the drug/clay hybrids, with three molecules in the interlayer space being the most favorable process. The resultant basal spacing was in agreement with the experimental results.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: