Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 69 papers

Adsorption of Malachite Green with Sodium Dodecylbenzene Sulfonate Modified Sepiolite: Characterization, Adsorption Performance and Regeneration.

  • Jian Yu‎ et al.
  • International journal of environmental research and public health‎
  • 2019‎

The adsorption of malachite green (MG) onto sodium dodecylbenzene sulfonate (SDBS)-modified sepiolite was investigated with respect to pH, oscillation rate, MG dosage and adsorbent dosage. The modification condition and modified sepiolite characterization were examined. The conditions of 100% cation exchange capacity (CEC), pH value of 9, contact time of 60 min and 25 °C were deemed as the optimal conditions. The interlayer spacing of sepiolite was expanded and the surface hydrophobicity improved due to the entering of SDBS into the interlayer structure of the sepiolite ore. This is probably the reason for its adsorption enhancement. The adsorption of malachite green by organic sepiolite is in line with the quasi-secondary kinetic model. The results from the regeneration procedure suggest that a superior regeneration property obtained with 0.2 mol/L HCl concentration.


Adsorption Behavior and Relative Distribution of Cd2+ Adsorption Mechanisms by the Magnetic and Nonmagnetic Biochars Derived from Chicken Manure.

  • Fei Huang‎ et al.
  • International journal of environmental research and public health‎
  • 2020‎

The present study investigated the adsorption of Cd2+ by nonmagnetic and magnetic biochars (CMB and M-CMB) derived from chicken manure, respectively. The adsorption characteristics were investigated as a function of initial pH, contact time, initial Cd2+ concentration and magnetic separation. Adsorption process of both biochars were better described by Pseudo-second-order kinetic equation and Freundlich isotherm model, which were spontaneous and endothermic in nature. It was found that maximum capacities were 60.69 and 41.07 mg/g obtained at the initial Cd2+ concentration of 180 mg/L for CMB and M-CMB, and the turbidity of adsorption-treated solution was reduced from 244.3 to 11.3 NTU after magnetic separation of 0.5 min. These indicated that M-CMB had lower adsorption capacity of Cd2+ than CMB, though it was successfully separated from the treated solutions. Furthermore, both biochars before and after adsorption were analyzed by SEM-EDS, XRD and FTIR. Adsorption mechanisms mainly included precipitation, ion-exchange, complexation and Cπ-coordination, in which precipitation and ion-exchange dominated the adsorption process by CMB, while in M-CMB, precipitation was always predominant mechanism, followed by ion-exchange. The two other mechanisms of complexation and Cπ-coordination were trivial in both biochars, jointly contributing 7.21% for CMB and 5.05% for M-CMB to total adsorption. The findings deepen our understanding of the mechanisms governing the adsorption process, which are also important for future practical applications in the removal of heavy metals from wastewater by the biochars.


Characterization of Fe(III) Adsorption onto Zeolite and Bentonite.

  • Tomáš Bakalár‎ et al.
  • International journal of environmental research and public health‎
  • 2020‎

In this study, the adsorption of Fe(III) from aqueous solution on zeolite and bentonite was investigated by combining batch adsorption technique, Atomic adsorption spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analyses. Although iron is commonly found in water and is an essential bioelement, many industrial processes require efficient removal of iron from water. Two types of zeolite and two types of bentonite were used. The results showed that the maximum adsorption capacities for removal of Fe (III) by Zeolite Micro 20, Zeolite Micro 50, blue bentonite, and brown bentonite were 10.19, 9.73, 11.64, and 16.65 mg.g-1, respectively. Based on the X-ray photoelectron spectroscopy (XPS) and X-ray fluorescence (XRF) analyses of the raw samples and the solid residues after sorption at low and high initial Fe concentrations, the Fe content is different in the surface layer and in the bulk of the material. In the case of lower initial Fe concentration (200 mg.dm-3), more than 95% of Fe is adsorbed in the surface layer. In the case of higher initial Fe concentration (4000 mg.dm-3), only about 45% and 61% of Fe is adsorbent in the surface layer of zeolite and bentonite, respectively; the rest is adsorbed in deeper layers.


Adsorption Characteristics of Activated Carbon Fibers in Respirator Cartridges for Toluene.

  • Jo Anne G Balanay‎ et al.
  • International journal of environmental research and public health‎
  • 2021‎

Respirator use has been shown to be associated with overall discomfort. Activated carbon fiber (ACF) has potential as an alternative adsorbent for developing thinner, lightweight, and efficient respirators due to its larger surface area, microporosity, and fabric form. The purpose of this pilot study was to determine the adsorption characteristics of commercially available ACF in respirator cartridges with varying ACF composition for toluene protection. Seven ACF types (one cloth, six felt) with varying properties were tested. Seven ACF cartridge configurations with varying ACF composition were challenged with five toluene concentrations (20-500 ppm) at constant air temperature (23 °C), relative humidity (50%), and air flow (32 LPM). Breakthrough curves were obtained using photoionization detectors. Breakthrough times (10%, 50%, and 5 ppm) and adsorption capacities were compared among ACF cartridge configurations to determine their suitable application in respiratory protection. Results showed that ACF cartridges containing the densest ACF felt types had the longest average breakthrough times (e.g., ~250-270 min to reach 5 ppm breakthrough time) and those containing ACF felt types with the highest specific surface areas had the highest average adsorption capacity (~450-470 mg/g). The ACF cartridges demonstrated breakthrough times of <1 h for 500 ppm toluene and 8-16 h for 20 ppm toluene. The ACF cartridges are more reliable for use at low ambient toluene concentrations but still have potential for use at higher concentrations for short-term protection. ACF felt forms with appropriate properties (density of ~0.07 g/cm3; specific surface area of ~2000 m2/g) have shown promising potential for the development of lighter and thinner respirators for protection against toluene.


Adsorption of Heavy Metal Ions Copper, Cadmium and Nickel by Microcystis aeruginosa.

  • Guoming Zeng‎ et al.
  • International journal of environmental research and public health‎
  • 2022‎

To investigate the treatment effect of algae biosorbent on heavy metal wastewater, in this paper, the adsorption effect of M. aeruginosa powder on heavy metal ions copper, cadmium and nickel was investigated using the uniform experimental method, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and TG-DSC comprehensive thermal analysis. The experimental results showed that the initial concentration of copper ion solution was 25 mg/L, the temperature was 30 °C, the pH value was 8 and the adsorption time was 5 h, which was the best condition for the removal of copper ions by algae powder adsorption, and the removal rate was 83.24%. The initial concentration of cadmium ion solution was 5 mg/L, the temperature was 35 °C, the pH value was 8 and the adsorption time was 4 h, which was the best condition for the adsorption of cadmium ion by algae powder, and the removal rate was 92.00%. The initial nickel ion solution concentration of 15 mg/L, temperature of 35 °C, pH value of 7 and adsorption time of 1 h were the best conditions for the adsorption of nickel ions by algae powder, and the removal rate was 88.67%. The spatial structure of algae powder changed obviously before and after adsorbing heavy metals. The functional groups such as amino and phosphate groups on the cell wall of M. aeruginosa enhanced the adsorption effect of heavy metal ions copper, cadmium and nickel. Additionally, M. aeruginosa adsorption of heavy metal ions copper, cadmium, nickel is an exothermic process. The above experiments show that M. aeruginosa can be used as a biological adsorbent to remove heavy metals, which lays a theoretical foundation for the subsequent treatment of heavy metal pollution by algae.


Effects of Biofilms on Trace Metal Adsorption on Plastics in Freshwater Systems.

  • Zhilin Liu‎ et al.
  • International journal of environmental research and public health‎
  • 2022‎

The formation of plastisphere on plastics and their potential impact on freshwater ecosystems have drawn increasing attention. However, there is still limited information about the effects of plastisphere on the heavy metal adsorption capacity and the related mechanism of plastic debris in different freshwaters. Herein, the trace metal adsorption capacity, kinetics and adsorption mechanisms of virgin and biofilm-covered plastic debris were investigated. Polypropylene (PP) and polyethylene terephthalate (PET) plastic debris were placed in three freshwaters (Xuanwu Lake, Donghu Lake and the Qinhuai River) for 45 days to incubate biofilms. Batch adsorption experiments were performed to compare the adsorption processes of trace metal on virgin and biofilm-covered plastics. Results showed that biofilms increase the adsorption of metals on plastics, and the adsorption isotherms were well fitted by the Langmuir model. Furthermore, the adsorption capacities for lead (Pb(II)) were higher than that of cadmium (Cd(II)) and zinc (Zn(II)), with 256.21 and 277.38 μg/g (Pb(II)) adsorbed in biofilm-covered PP and PET, respectively, in Xuanwu Lake. The adsorption kinetics of metals on plastic debris were significantly affected by the biofilms, by switching the intraparticle diffusion for virgin plastic debris to film diffusion for the biofilm-covered plastic debris. Moreover, the complexation of functional groups within the biofilms might mainly contribute to the increases of metal adsorption, involving the participation of oxygen and nitrogen groups. Overall, these results suggested that biofilms reinforce the potential role of plastics as a carrier of trace metals in freshwaters.


Mechanism of Myoglobin Molecule Adsorption on Silica: QCM, OWLS and AFM Investigations.

  • Monika Wasilewska‎ et al.
  • International journal of environmental research and public health‎
  • 2021‎

Adsorption kinetics of myoglobin on silica was investigated using the quartz crystal microbalance (QCM) and the optical waveguide light-mode spectroscopy (OWLS). Measurements were carried out for the NaCl concentration of 0.01 M and 0.15 M. A quantitative analysis of the kinetic adsorption and desorption runs acquired from QCM allowed to determine the maximum coverage of irreversibly bound myoglobin molecules. At a pH of 3.5-4 this was equal to 0.60 mg m-2 and 1.3 mg m-2 for a NaCl concentration of 0.01 M and 0.15 M, respectively, which agrees with the OWLS measurements. The latter value corresponds to the closely packed monolayer of molecules predicted from the random sequential adsorption approach. The fraction of reversibly bound protein molecules and their biding energy were also determined. It is observed that at larger pHs, the myoglobin adsorption kinetics was much slower. This behavior was attributed to the vanishing net charge that decreased the binding energy of molecules with the substrate. These results can be exploited to develop procedures for preparing myoglobin layers at silica substrates of well-controlled coverage useful for biosensing purposes.


Adsorption of Cadmium on Degraded Soils Amended with Maize-Stalk-Derived Biochar.

  • Caixia Wu‎ et al.
  • International journal of environmental research and public health‎
  • 2018‎

Biochar has been extensively proven to distinctively enhance the sorption capacity of both heavy metal and organic pollutants and reduce the related environmental risks. Soil pollution and degradation widely coexist, and the effect of biochar addition on adsorption behavior by degraded soils is not well understood. Four degraded soils with different degrees of degradation were amended with maize-stalk-derived biochar to investigate the adsorption of cadmium using batch methods. The maximum adsorption capacity (Qm) of degraded soil remarkably decreased in comparison with undegraded soil (5361 mg·kg-1→170 mg·kg-1), and the Qm of biochar increased with increasing pyrolysis temperature (22987 mg·kg-1→49016 mg·kg-1) which was much higher than that of soil. The addition of biochar can effectively improve the cadmium adsorption capacity of degraded soil (36⁻328%). The improving effect is stronger when increasing either the degradation level or the amount of added biochar, or the pyrolysis temperature of biochar. Contrary to the general soil⁻biochar system, adsorption of Cd was not enhanced but slightly suppressed (7.1⁻36.6%) when biochar was incorporated with degraded soils, and the adsorptivity attenuation degree was found to be negatively linear with SOM content in the degraded soil⁻biochar system. The results of the present study suggest that more attention on the adsorption inhibition and acceleration effect difference between the soil⁻biochar system and the degraded soil⁻biochar system is needed.


Adsorption Media for the Removal of Soluble Phosphorus from Subsurface Drainage Water.

  • Jessica K Hauda‎ et al.
  • International journal of environmental research and public health‎
  • 2020‎

Phosphorus (P) is a valuable, nonrenewable resource in agriculture promoting crop growth. P losses through surface runoff and subsurface drainage discharge beneath the root zone is a loss of investment. P entering surface water contributes to eutrophication of freshwater environments, impacting tourism, human health, environmental safety, and property values. Soluble P (SP) from subsurface drainage is nearly all bioavailable and is a significant contributor to freshwater eutrophication. The research objective was to select phosphorus sorbing media (PSM) best suited for removing SP from subsurface drainage discharge. From the preliminary research and literature, PSM with this potential were steel furnace slag (SFS) and a nano-engineered media (NEM). The PSM were evaluated using typical subsurface drainage P concentrations in column experiments, then with an economic analysis for a study site in Michigan. Both the SFS and generalized NEM (GNEM) removed soluble reactive phosphorus from 0.50 to below 0.05 mg/L in laboratory column experiments. The most cost-effective option from the study site was the use of the SFS, then disposing it each year, costing $906/hectare/year for the case study. GNEM that was regenerated onsite had a very similar cost. The most expensive option was the use of GNEM to remove P, including regeneration at the manufacturer, costing $1641/hectare/year. This study suggests that both SFS and NEM are both suited for treating drainage discharge. The use of SFS was more economical for the study site, but each site needs to be individually considered.


Optimization of Cadmium Adsorption by Magnetic Graphene Oxide Using a Fractional Factorial Design.

  • Hui Wang‎ et al.
  • International journal of environmental research and public health‎
  • 2020‎

Graphene materials have attracted increasing interest in water remediation. In this study, magnetic graphene oxide (MGO) was prepared through the modified Hummers method and the adsorption behaviors of cadmium were investigated. Firstly, the sorption kinetics, isotherms, as well as the effects of pH were investigated. Then, fractional factorial design (FFD) was used to optimize the effects of pH, temperature, time, initial concentration of cadmium ion and NaCl on cadmium adsorption. The results indicate that MGO could effectively remove cadmium ions from an aqueous solution and the sorption data could be described well by pseudo-second-order and Freundlich models, showing that the adsorption rate of cadmium ions on MGO is multilayer adsorption and dominated by the chemical adsorption. According to the FFD results, the maximum adsorption capacity of cadmium ions was 13.169 mg/g under the optimum condition of pH value 8, 45 °C, contact time 60 min, initial cadmium concentration of 70 mg/L and NaCl concentration of 100 mg/L. Higher levels of the pH value, temperature and initial cadmium concentration are beneficial to the adsorption process. These results are important for estimating and optimizing the removal of metal ions by MGO composite.


Adsorption Performance of Activated-Carbon-Loaded Nonwoven Filters Used in Filtering Facepiece Respirators.

  • Małgorzata Okrasa‎ et al.
  • International journal of environmental research and public health‎
  • 2019‎

Filtering nonwovens loaded with activated carbon are among the most popular materials used in the construction of filtering facepiece respirators (FFRs) with anti-odour properties that can be used for respiratory protection at workplaces where the occupational exposure limits of harmful substances are not exceeded. Such FFRs, in addition to a polymer filter material of varying effectiveness, also contain a layer of activated-carbon-loaded nonwoven filter, which limits the quantity of chemical compounds entering the breathing zone. The aim of this work was to analyse the influence of challenge concentration (20-120 ppm), relative humidity (2-70%), flow rate (20-55 L/min), and flow pattern (steady-state and pulsating) on the breakthrough of polymer/carbon nonwovens. A commercial activated-carbon-loaded nonwoven filter was used in this study. Its morphology and textural parameters were determined using optical microscopy, image processing, and nitrogen adsorption/desorption measurements at 77 K. Breakthrough experiments were carried out using cyclohexane vapours to assess adsorption characteristics of polymer/carbon media. The results showed that the breakthrough times decreased with increasing challenge concentration (up to 30%), relative humidity (up to 73%), and flow rate (up to 72%). The pulsating flow pattern was found to be more favourable in terms of odour reduction efficiency (up to 30%). The results indicate that all of these factors should be considered during selection and performance assessment of respirators used for odour relief.


Arsenic Oxidation and Removal from Water via Core-Shell MnO2@La(OH)3 Nanocomposite Adsorption.

  • Yulong Wang‎ et al.
  • International journal of environmental research and public health‎
  • 2022‎

Arsenic (As(III)), more toxic and with less affinity than arsenate (As(V)), is hard to remove from the aqueous phase due to the lack of efficient adsorbents. In this study, a core-shell structured MnO2@La(OH)3 nanocomposite was synthesized via a facile two-step precipitation method. Its removal performance and mechanisms for As(V) and As(III) were investigated through batch adsorption experiments and a series of analysis methods including the transformation kinetics of arsenic species in As(III) removal, FTIR, XRD and XPS. Solution pH could significantly influence the removal efficiencies of arsenic. The adsorption process of As(V) occurred rapidly in the first 5 h and then gradually decreased, whereas the As(III) removal rate was relatively slower. The maximum adsorption capacities of As(V) and As(III) were up to 138.9 and 139.9 mg/g at pH 4.0, respectively. For As(V) removal, the inner-sphere complexes of lanthanum arsenate were formed through the ligand exchange reactions and coprecipitation. The oxidation of As(III) to the less toxic As(V) by δ-MnO2 and subsequently the synergistic adsorption process by the lanthanum hydroxide on the MnO2@La(OH)3 nanocomposite to form lanthanum arsenate were the dominant mechanisms of As(III) removal. XPS analysis indicated that approximately 20.6% of Mn in the nanocomposite after As(III) removal were Mn(II). Furthermore, a small amount of Mn(II) and La(III) were released into solution during the process of As(III) removal. These results confirm its efficient performance in the arsenic-containing water treatment, such as As(III)-contaminated groundwater used for irrigation and As(V)-contaminated industrial wastewater.


Removal of Endocrine Disrupting Chemicals from Water: Adsorption of Bisphenol-A by Biobased Hydrophobic Functionalized Cellulose.

  • Antonio Tursi‎ et al.
  • International journal of environmental research and public health‎
  • 2018‎

The aim of this study is to examine the efficiency of biobased Spanish broom (SB) surface modified cellulose fibers to remove bisphenol A (BPA), a well-known endocrine disruptor, from water. Spanish brooms are flowering plants, which are native and abundant to Mediterranean regions. The functionalized fibers (FF) were found to have the best adsorption efficiency at pH 5, due to the optimal hydrophobic interaction between the FF fiber and BPA. Adsorption kinetics of BPA was found to fit well a pseudo-second order reaction. Equilibrium isotherm data were fitted by Langmuir and Freundlich models. A very fast and simple regeneration method was developed and it was observed that adsorption capacity of the fibers was kept almost unchanged after 3 consecutive uses. Bottled water and synthetic wastewater were also tested to assess the efficiency of the process under more realistic water and wastewater treatment conditions. It was found that BPA removal was slightly decreased from 77% in ultrapure water to 64% in synthetic wastewater matrix, indicating that FF has a high selectivity toward BPA, even in the presence of other organic compounds. Overall, it was observed that SB-modified fibers can be a new promising green biotechnology for water purification.


Adsorption of Anionic and Cationic Dyes on Activated Carbon Prepared from Oak Cupules: Kinetics and Thermodynamics Studies.

  • Manal Alkhabbas‎ et al.
  • International journal of environmental research and public health‎
  • 2023‎

In this study, activated carbon produced from oak cupules (ACOC) was prepared using chemical activation with H3PO4. ACOC is subsequently used as an adsorbent to facilitate the removal of an acidic dye, naphthol blue black (NBB), and basic dye crystal violet (CV) from aqueous solutions. The ACOC was characterized by FTIR spectroscopy, XRD, and SEM. The adsorption isotherm data fits well with the Langmuir model for NBB and CV. The kinetic models of adsorption of NBB and CV by ACOC were pseudo-first order and pseudo-second order, respectively. Thermodynamic parameters were evaluated and indicated that the adsorption of both dyes onto ACOC was endothermic and spontaneous. The adsorption capacity of ACOC reached 208 mg g-1 for NBB and 658 mg g-1 for CV. ACOC was shown to be a promising adsorbent for the removal of NBB and CV from aqueous solutions.


Characterization of Biochars Produced by Co-Pyrolysis of Hami Melon (Cantaloupes) Straw Mixed with Polypropylene and Their Adsorption Properties of Cadmium.

  • Changheng Li‎ et al.
  • International journal of environmental research and public health‎
  • 2021‎

Reuse of waste from Hami melon (cantaloupes) straws (HS) mingled with polypropylene (PP) ropes is necessary and beneficial to mitigate environmental pollution. The objective of this study was to investigate the characteristics and mechanisms of Cd2+ adsorption on biochars produced by co-pyrolysis of HS-PP with various mixing ratios. N2-sorption, scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), elemental analysis, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal gravity, and differential thermal gravity (TG/DTG) were applied to evaluate the physicochemical properties of materials. Batch adsorption experiments were carried out for investigating the effects of initial pH, Cd2+ concentration, and adsorption time. It was found that the Langmuir and pseudo-second-order models fitted best for the experimental data, indicating the dominant adsorption of co-pyrolysis biochars is via monolayer adsorption. Biochar derived at 4/1 mixing ratio of HS/PP by weight percentage had the highest adsorption capacity of 108.91 mg·g-1. Based on adsorption isotherm and kinetic analysis in combined with EDS, FTIR, and XRD analysis, it was concluded that the main adsorption mechanism of co-pyrolysis biochar involved the surface adsorption, cation exchange, complexation of Cd2+ with surface functional groups, and chemical precipitation. This study also demonstrates that agricultural wastes to biochar is a sustainable way to circular economy.


Synergy of Photocatalysis and Adsorption for Simultaneous Removal of Hexavalent Chromium and Methylene Blue by g-C3N4/BiFeO3/Carbon Nanotubes Ternary Composites.

  • Huiwen Huo‎ et al.
  • International journal of environmental research and public health‎
  • 2019‎

A novel graphite-phase carbon nitride (g-C3N4)/bismuth ferrite (BiFeO3)/carbon nanotubes (CNTs) ternary magnetic composite (CNBT) was prepared by a hydrothermal synthesis. Using this material, Cr(VI) and methylene blue (MB) were removed from wastewater through synergistic adsorption and photocatalysis. The effects of pH, time, and pollutant concentration on the photocatalytic performance of CNBT, as well as possible interactions between Cr(VI) and MB species were analyzed. The obtained results showed that CNTs could effectively reduce the recombination rate of electron-hole pairs during the photocatalytic reaction of the g-C3N4/BiFeO3 composite, thereby improving its photocatalytic performance, while the presence of MB increased the reduction rate of Cr(VI). After 5 h of the simultaneous adsorption and photocatalysis by CNBT, the removal rates of Cr(VI) and MB were 93% and 98%, respectively. This study provides a new theoretical basis and technical guidance for the combined application of photocatalysis and adsorption in the treatment of wastewaters containing mixed pollutants.


Cd(II) Adsorption on Different Modified Rice Straws under FTIR Spectroscopy as Influenced by Initial pH, Cd(II) Concentration, and Ionic Strength.

  • Shuai Wang‎ et al.
  • International journal of environmental research and public health‎
  • 2019‎

Rice straw is a kind of low-cost biosorbent. Through mechanical crushing, pyrolysis, incineration, and citric acid (CA) modification, it could be converted to rice straw powder (Sp), biochar (Sb), ash (Sa), and modified rice straw (Ms) accordingly. Using rice straw as an adsorbent, the influence of pH value (2, 4, and 9), initial Cd(II) concentration (0, 200, and 800 mg/L), and ionic strength (0, 0.2, to 0.6 mg/L) on the adsorption capacity for Cd(II) were examined with three replicates, and the relevant mechanisms were explored using Fourier transform infrared (FTIR) technology. Results showed that the modifications could improve the adsorption capacity of Cd(II) by changing their chemical structures. The products (Sb and Sa) of the pyrolysis and incineration of rice straw contained fewer hydroxyl and alkyl groups, but more Si-O groups. Citric acid modification removed a portion of silica in rice straw, increased its carboxylic content, and made more -OH groups exposed. Compared with Sp, Sb, Sa, and Ms were more likely to act as π donors in the Cd(II) sorption process and exhibited more carboxyl binding. The bands of C = C, -O-CH3, and the O-H, carboxyl, Si-O-Si or Si-O groups were involved in the Cd(II) sorption process. The adsorption amount of Cd(II) by the four adsorbents increased with the increase in the pH value of the solution and the initial Cd(II) concentration. Affected by pH in a solution, ion exchange, surface complexation, and precipitation were the major adsorption mechanisms. Further, under the influence of the initial Cd(II) concentration, electrostatic attraction played a leading role. With no interference by ionic strength, all the adsorbents had the greatest adsorption amount of Cd(II), and the intensity of O-H vibration was also the weakest; ion exchange was the most important mechanism in this process. Regardless of the influencing factors, Sa, with the greatest specific surface area, had an absolute advantage in the adsorption capacity of Cd(II) over Sp, Sb, and Ms.


Innovative Technological Approach for the Cyclic Nutrients Adsorption by Post-Digestion Sewage Sludge-Based Ash Co-Formed with Some Nanostructural Additives under a Circular Economy Framework.

  • Piotr Sakiewicz‎ et al.
  • International journal of environmental research and public health‎
  • 2022‎

This paper presents a new, innovative technological approach, in line with Circular Economy principles, to the effective management of sludge generated during municipal wastewater treatment processes and subsequently used for biogas production. This approach allows for optimal, functional, and controlled cascade-type biotechnological thermal conversion of carbon compounds present in sewage sludge, later in solid digestate residues (after biogas production), and finally in the ash structure (after incineration, purposefully dosed nanostructural additives make the production of a useful solid product possible, especially for cyclic adsorption and slow release of nutrients (N, P, K) in the soil). The idea is generally targeted at achieving an innovative conversion cycle under a Circular Economy framework. In particular, it is based on an energy carrier (methane biogas) and direct energy production. The functionalized combustion by-products can be advantageous in agriculture. The use of ashes with nanostructural additives (halloysite, kaolinite) from combustion of sewage sludge after the anaerobic fermentation as an adsorbent of selected nutrients important in agriculture (Na+, K+, NO3-, SO42-, PO43-, Cl-) was verified at laboratory scale. The tests were carried out both for pure ash and for the ash derived from combustion with the purposeful addition of kaolinite or halloysite. The equilibrium conditions for nitrate, potassium, sodium, phosphate(V), sulphate(VI), and chloride ions from aqueous solutions with the use of the three adsorbent structures were determined. The obtained innovative results were interpreted theoretically with adsorption isotherm models (Langmuir, Freundlich, Temkin, Jovanović). The most spectacular and clearly favorable results related to the influence of nanostructural additives in the process of sludge combustion, and formation of sorption surfaces under high temperature conditions were identified in the case of sorption-based separation of phosphate(V) ions (an increase from 1.13% to 61.24% with the addition of kaolinite, and even up to 76.19% with addition of halloysite).


Efficient Removal of Tetracycline from Aqueous Media with a Fe₃O₄ Nanoparticles@graphene Oxide Nanosheets Assembly.

  • Xinjiang Hu‎ et al.
  • International journal of environmental research and public health‎
  • 2017‎

A readily separated composite was prepared via direct assembly of Fe₃O4 magnetic nanoparticles onto the surface of graphene oxide (GO) (labeled as Fe₃O₄@GO) and used as an adsorbent for the removal of tetracycline (TC) from wastewater. The effects of external environmental conditions, such as pH, ionic strength, humic acid (HA), TC concentration, and temperature, on the adsorption process were studied. The adsorption data were analyzed by kinetics and isothermal models. The results show that the Fe₃O₄@GO composite has excellent sorptive properties and can efficiently remove TC. At low pH, the adsorption capacity of Fe₃O₄@GO toward TC decreases slowly with increasing pH value, while the adsorption capacity decreases rapidly at higher pH values. The ionic strength has insignificant effect on TC adsorption. The presence of HA affects the affinity of Fe₃O₄@GO to TC. The pseudo-second-order kinetics model and Langmuir model fit the adsorption data well. When the initial concentration of TC is 100 mg/L, a slow adsorption process dominates. Film diffusion is the rate limiting step of the adsorption. Importantly, Fe₃O₄@GO has good regeneration performance. The above results are of great significance to promote the application of Fe₃O₄@GO in the treatment of antibiotic wastewater.


Adsorptive Removal of Arsenic and Lead by Stone Powder/Chitosan/Maghemite Composite Beads.

  • Hun Pak‎ et al.
  • International journal of environmental research and public health‎
  • 2021‎

Arsenic (As) and lead (Pb) contamination in groundwater is a serious problem in countries that use groundwater as drinking water. In this study, composite beads, called SCM beads, synthesized using stone powder (SP), chitosan (Ch), and maghemite (Mag) with different weight ratios (1/1/0.1, 1/1/0.3, and 1/1/0.5 for SP/Ch/Mag) were prepared, characterized and used as adsorbents for the removal of As and Pb from artificially contaminated water samples. Adsorption isotherm experiments of As and Pb onto the beads were conducted and single-solute adsorption isotherm models such as the Langmuir, Freundlich, Dubinin-Radushkevich (DR), and dual mode (DM) models were fitted to the experimental data to analyze the adsorption characteristics. The maximum adsorption capacities of the SCM beads were 75.7 and 232.8 mmol/kg for As and Pb, respectively, which were 40 and 5.6 times higher than that of SP according to the Langmuir model analyses. However, the DM model had the highest determinant coefficient (R2) values for both As and Pb adsorption, indicating that the beads had heterogenous adsorption sites with different adsorption affinities. These magnetic beads could be utilized to treat contaminated groundwater.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: