2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 71 papers

Using Modified Technology Acceptance Model to Evaluate the Adoption of a Proposed IoT-Based Indoor Disaster Management Software Tool by Rescue Workers.

  • Preetinder Singh Brar‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2022‎

Advancements in IoT technology have been instrumental in the design and implementation of various ubiquitous services. One such design activity was carried out by the authors of this paper, who proposed a novel cloud-centric IoT-based disaster management framework and developed a multimedia-based prototype that employed real-time geographical maps. The multimedia-based system can provide vital information on maps that can improve the planning and execution of evacuation tasks. This study was intended to explore the acceptance of the proposed technology by the specific set of users that could potentially lead to its adoption by rescue agencies for carrying out indoor rescue and evacuation operations. The novelty of this study lies in the concept that the acceptability of the proposed system was ascertained before the complete implementation of the system, which prevented potential losses of time and other resources. Based on the extended Technology Acceptance Model (TAM), we proposed a model included factors such as perceived usefulness, perceived ease of use, attitude, and behavioural intention. Other factors include trust in the proposed system, job relevance, and information requirement characteristics. Online survey data collected from the respondents were analyzed using structural equation modelling (SEM) revealed that although perceived ease of use and job relevance had significant impacts on perceived usefulness, trust had a somewhat milder impact on the same. The model also demonstrated a statistically moderate impact of trust and perceived ease of use on behavioural intention. All other relationships were statistically strong. Overall, all proposed relationships were supported, with the research model providing a better understanding of the perceptions of users towards the adoption of the proposed technology. This would be particularly useful while making decisions regarding the inclusion of various features during the industrial production of the proposed system.


Using System Dynamics Approach to Explore the Mode Shift between Automated Vehicles, Conventional Vehicles, and Public Transport in Melbourne, Australia.

  • Yilun Chen‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2023‎

With the increasing use of automated vehicles (AVs) in the coming decades, government authorities and private companies must leverage their potential disruption to benefit society. Few studies have considered the impact of AVs towards mode shift by considering a range of factors at the city level, especially in Australia. To address this knowledge gap, we developed a system dynamic (SD)-based model to explore the mode shift between conventional vehicles (CVs), AVs, and public transport (PT) by systematically considering a range of factors, such as road network, vehicle cost, public transport supply, and congestion level. By using Melbourne's Transport Network as a case study, the model simulates the mode shift among AVs, CVs, and PT modes in the transportation system over 50 years, starting from 2018, with the adoption of AVs beginning in 2025. Inputs such as current traffic, road capacity, public perception, and technological advancement of AVs are used to assess the effects of different policy options on the transport systems. The data source used is from the Victorian Integrated Transport Model (VITM), provided by the Department of Transport and Planning, Melbourne, Australia, data from the existing literature, and authors' assumptions. To our best knowledge, this is the first time using an SD model to investigate the impacts of AVs on mode shift in the Australian context. The findings suggest that AVs will gradually replace CVs as another primary mode of transportation. However, PT will still play a significant role in the transportation system, accounting for 50% of total trips by person after 2058. Cost is the most critical factor affecting AV adoption rates, followed by road network capacity and awareness programs. This study also identifies the need for future research to investigate the induced demand for travel due to the adoption of AVs and the application of equilibrium constraints to the traffic assignment model to increase model accuracy. These findings can be helpful for policymakers and stakeholders to make informed decisions regarding AV adoption policies and strategies.


A Formal Verification of a Reputation Multi-Factor Authentication Mechanism for Constrained Devices and Low-Power Wide-Area Network Using Temporal Logic.

  • Wesley R Bezerra‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2023‎

There are many security challenges in IoT, especially related to the authentication of restricted devices in long-distance and low-throughput networks. Problems such as impersonation, privacy issues, and excessive battery usage are some of the existing problems evaluated through the threat modeling of this work. A formal assessment of security solutions for their compliance in addressing such threats is desirable. Although several works address the verification of security protocols, verifying the security of components and their non-locking has been little explored. This work proposes to analyze the design-time security of the components of a multi-factor authentication mechanism with a reputation regarding security requirements that go beyond encryption or secrecy in data transmission. As a result, it was observed through temporal logic that the mechanism is deadlock-free and meets the requirements established in this work. Although it is not a work aimed at modeling the security mechanism, this document provides the necessary details for a better understanding of the mechanism and, consequently, the process of formal verification of its security properties.


Podiatrist-Delivered Health Coaching to Facilitate the Use of a Smart Insole to Support Foot Health Monitoring in People with Diabetes-Related Peripheral Neuropathy.

  • Emma M Macdonald‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2021‎

This trial evaluated the feasibility of podiatrist-led health coaching (HC) to facilitate smart-insole adoption and foot monitoring in adults with diabetes-related neuropathy. Adults aged 69.9 ± 5.6 years with diabetes for 13.7 ± 10.3 years participated in this 4-week explanatory sequential mixed-methods intervention. An HC training package was delivered to podiatrists, who used HC to issue a smart insole to support foot monitoring. Insole usage data monitored adoption. Changes in participant understanding of neuropathy, foot care behaviours, and intention to adopt the smart insole were measured. Focus group and in-depth interviews explored quantitative data. Initial HC appointments took a mean of 43.8 ± 8.8 min. HC fidelity was strong for empathy/rapport and knowledge provision but weak for assessing motivational elements. Mean smart-insole wear was 12.53 ± 3.46 h/day with 71.2 ± 13.9% alerts not effectively off-loaded, with no significant effect for time on usage F(3,6) = 1.194 (p = 0.389) or alert responses F(3,6) = 0.272 (p = 0.843). Improvements in post-trial questionnaire mean scores and focus group responses indicate podiatrist-led HC improved participants' understanding of neuropathy and implementation of footcare practices. Podiatrist-led HC is feasible, supporting smart-insole adoption and foot monitoring as evidenced by wear time, and improvements in self-reported footcare practices. However, podiatrists require additional feedback to better consolidate some unfamiliar health coaching skills. ACTRN12618002053202.


Maize Silage Kernel Fragment Estimation Using Deep Learning-Based Object Recognition in Non-Separated Kernel/Stover RGB Images.

  • Christoffer Bøgelund Rasmussen‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2019‎

Efficient and robust evaluation of kernel processing from corn silage is an important indicator to a farmer to determine the quality of their harvested crop. Current methods are cumbersome to conduct and take between hours to days. We present the adoption of two deep learning-based methods for kernel processing prediction without the cumbersome step of separating kernels and stover before capturing images. The methods show that kernels can be detected both with bounding boxes and at pixel-level instance segmentation. Networks were trained on up to 1393 images containing just over 6907 manually annotated kernel instances. Both methods showed promising results despite the challenging setting, with an average precision at an intersection-over-union of 0.5 of 34.0% and 36.1% on the test set consisting of images from three different harvest seasons for the bounding-box and instance segmentation networks respectively. Additionally, analysis of the correlation between the Kernel Processing Score (KPS) of annotations against the KPS of model predictions showed a strong correlation, with the best performing at r(15) = 0.88, p = 0.00003. The adoption of deep learning-based object recognition approaches for kernel processing measurement has the potential to lower the quality assessment process to minutes, greatly aiding a farmer in the strenuous harvesting season.


Co-Creating the Cities of the Future.

  • Verónica Gutiérrez‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2016‎

In recent years, the evolution of urban environments, jointly with the progress of the Information and Communication sector, have enabled the rapid adoption of new solutions that contribute to the growth in popularity of Smart Cities. Currently, the majority of the world population lives in cities encouraging different stakeholders within these innovative ecosystems to seek new solutions guaranteeing the sustainability and efficiency of such complex environments. In this work, it is discussed how the experimentation with IoT technologies and other data sources form the cities can be utilized to co-create in the OrganiCity project, where key actors like citizens, researchers and other stakeholders shape smart city services and applications in a collaborative fashion. Furthermore, a novel architecture is proposed that enables this organic growth of the future cities, facilitating the experimentation that tailors the adoption of new technologies and services for a better quality of life, as well as agile and dynamic mechanisms for managing cities. In this work, the different components and enablers of the OrganiCity platform are presented and discussed in detail and include, among others, a portal to manage the experiment life cycle, an Urban Data Observatory to explore data assets, and an annotations component to indicate quality of data, with a particular focus on the city-scale opportunistic data collection service operating as an alternative to traditional communications.


EDLaaS:Fully Homomorphic Encryption over Neural Network Graphs for Vision and Private Strawberry Yield Forecasting.

  • George Onoufriou‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2022‎

We present automatically parameterised Fully Homomorphic Encryption (FHE) for encrypted neural network inference and exemplify our inference over FHE-compatible neural networks with our own open-source framework and reproducible examples. We use the fourth generation Cheon, Kim, Kim, and Song (CKKS) FHE scheme over fixed points provided by the Microsoft Simple Encrypted Arithmetic Library (MS-SEAL). We significantly enhance the usability and applicability of FHE in deep learning contexts, with a focus on the constituent graphs, traversal, and optimisation. We find that FHE is not a panacea for all privacy-preserving machine learning (PPML) problems and that certain limitations still remain, such as model training. However, we also find that in certain contexts FHE is well-suited for computing completely private predictions with neural networks. The ability to privately compute sensitive problems more easily while lowering the barriers to entry can allow otherwise too-sensitive fields to begin advantaging themselves of performant third-party neural networks. Lastly, we show how encrypted deep learning can be applied to a sensitive real-world problem in agri-food, i.e., strawberry yield forecasting, demonstrating competitive performance. We argue that the adoption of encrypted deep learning methods at scale could allow for a greater adoption of deep learning methodologies where privacy concerns exist, hence having a large positive potential impact within the agri-food sector and its journey to net zero.


Machine Learning for the Detection and Diagnosis of Anomalies in Applications Driven by Electric Motors.

  • Fábio Ferraz Júnior‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2023‎

Manufacturing systems are becoming increasingly flexible, necessitating the adoption of new technologies that allow adaptations to a turbulent and complex modern market. Consequently, modern concepts of production systems require horizontal and vertical integration, extending across value networks and within a factory or production shop. The integration of these environments enables the acquisition of a substantial amount of data containing information pertaining to production, processes, and equipment located on the shop floor. When these data and information are processed and analyzed, they have the potential to reveal valuable insights and knowledge about the manufacturing systems, offering interpretive outcomes for strategic decision making. One of the opportunities presented in this context includes the implementation of predictive maintenance (PdM). However, industrial adoption of PdM is still relatively low. In this paper, the aim is to propose a methodology for selecting the main attributes (variables) to be considered in the instrumentation setup of rotating machines driven by electric motors to decrease the associated costs and the time spent defining them. For this, the most well-known data science and machine learning algorithms are investigated to choose the one most adequate for this task. For the experiments, different testing scenarios were proposed to detect the different possible types of anomalies, such as uncoupled, overloaded, unbalanced, misaligned, and normal. The results obtained show how these algorithms can be effective in classifying the different types of anomalies and that the two models that presented the best accuracy values were k-nearest neighbor and multi-layer perceptron.


A Systematic Review of International Affective Picture System (IAPS) around the World.

  • Diogo Branco‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2023‎

Standardized Emotion Elicitation Databases (SEEDs) allow studying emotions in laboratory settings by replicating real-life emotions in a controlled environment. The International Affective Pictures System (IAPS), containing 1182 coloured images as stimuli, is arguably the most popular SEED. Since its introduction, multiple countries and cultures have validated this SEED, making its adoption on the study of emotion a worldwide success. For this review, 69 studies were included. Results focus on the discussion of validation processes by combining self-report and physiological data (Skin Conductance Level, Heart Rate Variability and Electroencephalography) and self-report only. Cross-age, cross-cultural and sex differences are discussed. Overall, IAPS is a robust instrument for emotion elicitation around the world.


In vitro analysis of pyrogenicity and cytotoxicity profiles of flex sensors to be used to sense human joint postures.

  • Giovanni Saggio‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2014‎

Flex sensors can be usefully adopted as mechanical-electrical transducers to measure human joint movements, since their electrical resistance varies proportionally to the angle assumed by the joint under measure. Over time, these sensors have been investigated in terms of mechanical and electrical behavior, but no reports have detailed the possibility of their adoption not just on top but under the human skin of the joint. To this aim, our work investigated in vitro the pyrogenic potential and cytotoxicity of some commercially available flex sensors as a first step toward the necessary requirements regarding their biocompatibility, to predict possible foreign body reactions when used in vivo. Results demonstrated that some specific flex sensors satisfy such requirements.


An Efficient and Geometric-Distortion-Free Binary Robust Local Feature.

  • Jing-Ming Guo‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2019‎

An efficient and geometric-distortion-free approach, namely the fast binary robust local feature (FBRLF), is proposed. The FBRLF searches the stable features from an image with the proposed multiscale adaptive and generic corner detection based on the accelerated segment test (MAGAST) to yield an optimum threshold value based on adaptive and generic corner detection based on the accelerated segment test (AGAST). To overcome the problem of image noise, the Gaussian template is applied, which is efficiently boosted by the adoption of an integral image. The feature matching is conducted by incorporating the voting mechanism and lookup table method to achieve a high accuracy with low computational complexity. The experimental results clearly demonstrate the superiority of the proposed method compared with the former schemes regarding local stable feature performance and processing efficiency.


Algorithm for Mobile Platform-Based Real-Time QRS Detection.

  • Luca Neri‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2023‎

Recent advancements in smart, wearable technologies have allowed the detection of various medical conditions. In particular, continuous collection and real-time analysis of electrocardiogram data have enabled the early identification of pathologic cardiac rhythms. Various algorithms to assess cardiac rhythms have been developed, but these utilize excessive computational power. Therefore, adoption to mobile platforms requires more computationally efficient algorithms that do not sacrifice correctness. This study presents a modified QRS detection algorithm, the AccYouRate Modified Pan-Tompkins (AMPT), which is a simplified version of the well-established Pan-Tompkins algorithm. Using archived ECG data from a variety of publicly available datasets, relative to the Pan-Tompkins, the AMPT algorithm demonstrated improved computational efficiency by 5-20×, while also universally enhancing correctness, both of which favor translation to a mobile platform for continuous, real-time QRS detection.


Review of Robot-Assisted HIFU Therapy.

  • Anthony Gunderman‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2023‎

This paper provides an overview of current robot-assisted high-intensity focused ultrasound (HIFU) systems for image-guided therapies. HIFU is a minimally invasive technique that relies on the thermo-mechanical effects of focused ultrasound waves to perform clinical treatments, such as tumor ablation, mild hyperthermia adjuvant to radiation or chemotherapy, vein occlusion, and many others. HIFU is typically performed under ultrasound (USgHIFU) or magnetic resonance imaging guidance (MRgHIFU), which provide intra-operative monitoring of treatment outcomes. Robot-assisted HIFU probe manipulation provides precise HIFU focal control to avoid damage to surrounding sensitive anatomy, such as blood vessels, nerve bundles, or adjacent organs. These clinical and technical benefits have promoted the rapid adoption of robot-assisted HIFU in the past several decades. This paper aims to present the recent developments of robot-assisted HIFU by summarizing the key features and clinical applications of each system. The paper concludes with a comparison and discussion of future perspectives on robot-assisted HIFU.


5G Technology in Healthcare and Wearable Devices: A Review.

  • Delshi Howsalya Devi‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2023‎

Wearable devices with 5G technology are currently more ingrained in our daily lives, and they will now be a part of our bodies too. The requirement for personal health monitoring and preventive disease is increasing due to the predictable dramatic increase in the number of aging people. Technologies with 5G in wearables and healthcare can intensely reduce the cost of diagnosing and preventing diseases and saving patient lives. This paper reviewed the benefits of 5G technologies, which are implemented in healthcare and wearable devices such as patient health monitoring using 5G, continuous monitoring of chronic diseases using 5G, management of preventing infectious diseases using 5G, robotic surgery using 5G, and 5G with future of wearables. It has the potential to have a direct effect on clinical decision making. This technology could improve patient rehabilitation outside of hospitals and monitor human physical activity continuously. This paper draws the conclusion that the widespread adoption of 5G technology by healthcare systems enables sick people to access specialists who would be unavailable and receive correct care more conveniently.


Facilitating Hotspot Alignment in Tip-Enhanced Raman Spectroscopy via the Silver Photoluminescence of the Probe.

  • Yuan Fan‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2020‎

A tip-enhanced Raman spectroscopy (TERS) system based on an atomic force microscope (AFM) and radially polarized laser beam was developed. A TERS probe with plasmon resonance wavelength matching the excitation wavelength was prepared with the help of dark-field micrographs. The intrinsic photoluminescence (PL) from the silver (Ag)-coated TERS probe induced by localized surface plasmon resonance contains information about the near-field enhanced electromagnetic field intensity of the probe. Therefore, we used the intensity change of Ag PL to evaluate the stability of the Ag-coated probe during TERS experiments. Tracking the Ag PL of the TERS probe was helpful to detect probe damage and hotspot alignment. Our setup was successfully used for the TERS imaging of single-walled carbon nanotubes, which demonstrated that the Ag PL of the TERS probe is a good criterion to assist in the hotspot alignment procedure required for TERS experiments. This method lowers the risk of contamination and damage of the precious TERS probe, making it worthwhile for wide adoption in TERS experiments.


Virtual Reality with 360-Video Storytelling in Cultural Heritage: Study of Presence, Engagement, and Immersion.

  • Filip Škola‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2020‎

This paper presents a combined subjective and objective evaluation of an application mixing interactive virtual reality (VR) experience with 360° storytelling. The hypothesis that the modern immersive archaeological VR application presenting cultural heritage from a submerged site would sustain high levels of presence, immersion, and general engagement was leveraged in the investigation of the user experience with both the subjective (questionnaires) and the objective (neurophysiological recording of the brain signals using electroencephalography (EEG)) evaluation methods. Participants rated the VR experience positively in the questionnaire scales for presence, immersion, and subjective judgement. High positive rating concerned also the psychological states linked to the experience (engagement, emotions, and the state of flow), and the experience was mostly free from difficulties linked to the accustomization to the VR technology (technology adoption to the head-mounted display and controllers, VR sickness). EEG results are in line with past studies examining brain responses to virtual experiences, while new results in the beta band suggest that EEG is a viable tool for future studies of presence and immersion in VR.


A Telemedicine Robot System for Assisted and Independent Living.

  • Natasa Koceska‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2019‎

The emerging demographic trends toward an aging population, demand new ways and solutions to improve the quality of elderly life. These include, prolonged independent living, improved health care, and reduced social isolation. Recent technological advances in the field of assistive robotics bring higher sophistication and various assistive abilities that can help in achieving these goals. In this paper, we present design and validation of a low-cost telepresence robot that can assist the elderly and their professional caregivers, in everyday activities. The developed robot structure and its control objectives were tested in, both, a simulation and experimental environment. On-field experiments were done in a private elderly care center involving elderly persons and caregivers as participants. The goal of the evaluation study was to test the software architecture and the robot capabilities for navigation, as well as the robot manipulator. Moreover, participants' reactions toward a possible adoption of the developed robot system in everyday activities were assessed. The obtained results of the conducted evaluation study are also presented and discussed.


Structural Health Monitoring Cost Estimation of a Piezosensorized Aircraft Fuselage.

  • Ilias N Giannakeas‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2022‎

Guided waves-based SHM systems are of interest in the aeronautic sector due to their lightweight, long interrogation distances, and low power consumption. In this study, a bottom-up framework for the estimation of the initial investment cost (COTC) and the added weight (WAW) associated with the integration of a SHM system to an aircraft is presented. The framework provides a detailed breakdown of the activities and their costs for the sensorization of a structure using a fully wired approach or the adoption of the printed diagnostic film. Additionally, the framework considers the difference between configuring the system for Manual or Remote data acquisition. Based on the case study presented on the sensorization of a regional aircraft composite fuselage, there is a trade-off between COTC and WAW for the SHM options considered. The Wired-Manual case leads to the lowest COTC with the highest WAW, while the combination of diagnostic film with a Remote system leads to the highest COTC and the lowest WAW. These estimations capture the characteristics of each system and can be integrated into cost-benefit analyses for the final selection of a particular configuration.


Buried RF Sensors for Smart Road Infrastructure: Empirical Communication Range Testing, Propagation by Line of Sight, Diffraction and Reflection Model and Technology Comparison for 868 MHz-2.4 GHz.

  • Vlad Marsic‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2023‎

Updating the road infrastructure requires the potential mass adoption of the road studs currently used in car detection, speed monitoring, and path marking. Road studs commonly include RF transceivers connecting the buried sensors to an offsite base station for centralized data management. Since traffic monitoring experiments through buried sensors are resource expensive and difficult, the literature detailing it is insufficient and inaccessible due to various strategic reasons. Moreover, as the main RF frequencies adopted for stud communication are either 868/915 MHz or 2.4 GHz, the radio coverage differs, and it is not readily predictable due to the low-power communication in the near proximity of the ground. This work delivers a reference study on low-power RF communication ranging for the two above frequencies up to 60 m. The experimental setup employs successive measurements and repositioning of a base station at three different heights of 0.5, 1 and 1.5 m, and is accompanied by an extensive theoretical analysis of propagation, including line of sight, diffraction, and wall reflection. Enhancing the tutorial value of this work, a correlation analysis using Pearson's coefficient and root mean square error is performed between the field test and simulation results.


Evaluating Muscle Activation Models for Elbow Motion Estimation.

  • Tyler Desplenter‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2018‎

Adoption of wearable assistive technologies relies heavily on improvement of existing control system models. Knowing which models to use and how to improve them is difficult to determine due to the number of proposed solutions with relatively little broad comparisons. One type of these models, muscle activation models, describes the nonlinear relationship between neural inputs and mechanical activation of the muscle. Many muscle activation models can be found in the literature, but no comparison is available to guide the community on limitations and improvements. In this research, an EMG-driven elbow motion model is developed for the purpose of evaluating muscle activation models. Seven muscle activation models are used in an optimization procedure to determine which model has the best performance. Root mean square errors in muscle torque estimation range from 1.67-2.19 Nm on average over varying input trajectories. The computational resource demand was also measured during the optimization procedure, as it is an important aspect for determining if a model is feasible for use in a particular wearable assistive device. This study provides insight into the ability of these models to estimate elbow motion and the trade-off between estimation accuracy and computational demand.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: