Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Tear Film Pharmacokinetics and Systemic Absorption Following Topical Administration of 1% Prednisolone Acetate Ophthalmic Suspension in Dogs.

  • Lionel Sebbag‎ et al.
  • Frontiers in veterinary science‎
  • 2020‎

The study aimed to determine the tear film pharmacokinetics following topical administration of 1% prednisolone acetate-assessing whether two drops would provide a superior kinetic profile compared to one drop-and to determine the fraction of an eye drop that reaches the systemic circulation in dogs. Two separate experiments were conducted in eight healthy Beagle dogs: (i) Instillation of 1 drop (35 μL) or 2 drops (70 μL) of 1% prednisolone acetate ophthalmic suspension in each eye, followed by tear collections with Schirmer strips from 0 to 720 min; (ii) Instillation of 1 or 2 drops of 1% prednisolone acetate in both eyes 4 times daily for 3 days, followed by blood collection 10-15 min after each topical administration on Day 3. Tear and blood samples were analyzed with high performance liquid chromatography to determine the levels of prodrug (prednisolone acetate), active metabolite (prednisolone) and total prednisolone (prednisolonetotal = prodrug + active metabolite). Prednisolone levels represented 10 and 72% of prednisolonetotal concentrations in tears and plasma, respectively, indicating a greater hydrolysis of prodrug in the blood vs. tear compartment. For eyes receiving one or two drops, tear film prednisolonetotal concentrations were high (~3.1 mg/mL) immediately following topical administration but rapidly decreased by ~45% at 1 min and ~95% at 15 min. No differences were noted between 1 vs. 2 drops in tear film prednisolonetotal concentrations (including maximal concentration, Cmax) or residual drug levels in tears at any time point (P ≥ 0.097); however, instillation of 2 drops provided a higher average tear concentration (Cavg) and overall drug exposure to the ocular surface (AUClast) over the 12-h sampling period (P = 0.009). Average plasma prednisolonetotal concentration represented ≤ 2% of the dose applied to the ocular surface, and did not differ significantly for dogs receiving 1 drop (17 ng/mL) or 2 drops (20 ng/mL) 4 times daily for 3 days (P = 0.438). In sum, topical corticotherapy is beneficial for inflammatory conditions of the canine anterior segment given the relatively high concentrations achieved in tears, although caution is warranted to prevent unwanted local or systemic adverse effects.


Albumin Levels in Tear Film Modulate the Bioavailability of Medically-Relevant Topical Drugs.

  • Lionel Sebbag‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

The breakdown of blood-tear barrier that occurs with ocular pathology allows for large amounts of albumin to leak into the tear fluid. This process likely represents an important restriction to drug absorption in ophthalmology, as only the unbound drug is transported across the ocular tissue barriers to exert its pharmacologic effect. We aimed to investigate the effects of albumin levels in tears on the bioavailability of two commonly used ophthalmic drugs: tropicamide, an antimuscarinic that produces mydriasis and cycloplegia, and latanoprost, a PGF2α analog used for the treatment of glaucoma. Eight female beagle dogs underwent a randomized, vehicle-controlled crossover trial. For each dog, one eye received 30 µl of artificial tears (control) or canine albumin (0.4 or 1.5%) at random, immediately followed by 30 µl of 1% tropicamide (2 days, 24 h washout) or 0.005% latanoprost (2 days, 72 h washout) in both eyes. Pupil diameter (digital caliper) and intraocular pressure (IOP; rebound tonometry) were recorded at various times following drug administration (0 to 480 min) and compared between both groups with a mixed model for repeated measures. Albumin in tears had a significant impact on pupillary diameter for both tropicamide (P ≤ 0.001) and latanoprost (P ≤ 0.047), with no differences noted between 0.4% and 1.5% concentrations. Reduction in the maximal effect (pupil size) and overall drug exposure (area under the effect time-curve of pupil size over time) were significant for tropicamide (6.2-8.5% on average, P ≤ 0.006) but not for latanoprost (P ≥ 0.663). The IOP, only measured in eyes receiving latanoprost, was not significantly impacted by the addition of either 0.4% (P = 0.242) or 1.5% albumin (P = 0.879). Albumin in tear film, previously shown to leak from the conjunctival vasculature in diseased eyes, may bind to topically administered drugs and reduces their intraocular penetration and bioavailability. Further investigations in clinical patients and other commonly used ophthalmic medications are warranted.


Tear Fluid Pharmacokinetics Following Oral Prednisone Administration in Dogs With and Without Conjunctivitis.

  • Lionel Sebbag‎ et al.
  • Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics‎
  • 2019‎

Purpose: To describe the pharmacokinetics (PK) of prednisone and prednisolone in tear fluid of dogs receiving oral prednisone at anti-inflammatory to immunosuppressive doses and to assess the impact of induced conjunctivitis on lacrimal drug levels. Methods: Six healthy Beagle dogs were administered 4 courses of prednisone at 0.5, 1.0, 2.0, and 4.0 mg/kg given orally once a day for 5 days. At steady state, topical histamine was applied to induce mild (1 mg/mL) or severe (375 mg/mL) conjunctivitis in 1 eye of each dog and tear samples were collected from both eyes at selected times. Prednisone and prednisolone were quantified in tears by liquid chromatography-mass spectrometry. Results: Lacrimal prednisone and prednisolone concentrations ranged from 2 to 523 ng/mL and 5 to 191 ng/mL, respectively. Drug concentrations were overall greater in dogs receiving higher doses of prednisone, but were not correlated with tear flow rate. Eyes with conjunctivitis often had larger amounts of prednisone and prednisolone in tear fluid compared to control eyes (up to +64%), but differences were not statistically significant. Significantly greater, but clinically insignificant, levels of prednisolone were found in eyes with severe versus mild conjunctivitis for oral prednisone doses ≥1.0 mg/kg. Conclusions: Disruption of the blood-tear barrier with conjunctivitis did not significantly affect drug levels in tears. Based on drug PK in tears, oral prednisone is likely safe for the management of reflex uveitis and ocular surface diseases. However, further prospective trials using systemic corticotherapy in diseased animals are warranted to confirm findings from this preclinical study.


Histamine-Induced Conjunctivitis and Breakdown of Blood-Tear Barrier in Dogs: A Model for Ocular Pharmacology and Therapeutics.

  • Lionel Sebbag‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

Conjunctival inflammation disturbs the blood-tear barrier and thus affects the tear film stability and composition. We aimed to develop a non-invasive and reliable method to induce conjunctivitis in dogs, a large animal model for translational work on ocular surface disease in humans. Six beagle dogs underwent a randomized, vehicle-controlled, balanced crossover trial-on six separate days, one eye received topical artificial tears (vehicle), while the other eye received one of six concentrations of histamine solution (0.005-500 mg/ml). At sequential times after eyedrop administration, a conjunctivitis score was given to each eye based on the degree of palpebral and bulbar conjunctival hyperemia and chemosis, ocular pruritus, and discharge. Total protein content (TPC) and serum albumin were quantified in tear fluid at baseline and 20 min. Additionally, 13 dogs presenting for various ophthalmic diseases with associated conjunctivitis were examined. Experimentally induced conjunctivitis developed rapidly (<1 min) following topical histamine administration and lasted for 1-3 h (four lowest doses) to 6-8 h (two highest doses). The severity of conjunctivitis was dose-dependent. Histamine was overall well tolerated, although transient blepharitis, aqueous flare, and ocular hypertension occurred in a few dogs receiving histamine ≥375 mg/ml. TPC and serum albumin levels increased in tears of eyes receiving histamine ≥1.0 mg/ml, being significantly higher than vehicle and baseline in eyes receiving histamine ≥375 mg/ml. Lacrimal albumin levels were also increased in 13 dogs with naturally acquired conjunctivitis, up 2.7-14.9 fold compared to contralateral healthy eyes. Histamine-induced conjunctivitis represents a robust model for translational work on the ocular surface given the low cost, non-invasiveness, self-resolving nature, ability to adjust the duration and severity of the disease, and shared features with naturally occurring ocular diseases. Histamine solutions of 1, 10, and 375 mg/ml induce mild, moderate, and severe conjunctivitis in dogs, respectively. Leakage of serum albumin in tear fluid of eyes with conjunctivitis suggests a breakdown of the blood-tear barrier.


Kinetics of Fluorescein in Tear Film After Eye Drop Instillation in Beagle Dogs: Does Size Really Matter?

  • Lionel Sebbag‎ et al.
  • Frontiers in veterinary science‎
  • 2019‎

The study aimed to determine the impact of drop size on tear film pharmacokinetics and assess important physiological parameters associated with ocular drug delivery in dogs. Two separate experiments were conducted in eight healthy Beagle dogs: (i) Instillation of one drop (35 μl) or two drops (70 μl) of 1% fluorescein solution in each eye followed by tear collections with capillary tubes from 0 to 180 min; (ii) Instillation of 10 to 100 μl of 0.1% fluorescein in each eye followed by external photography with blue excitation filter (to capture periocular spillage of fluorescein) and tear collections from 1 to 20 min (to capture tear turnover rate; TTR). Fluorescein concentrations were measured in tear samples with a fluorophotometer. The TTR was estimated based upon non-linear mixed-effects analysis of fluorescein decay curves. Tear film pharmacokinetics were not superior with instillation of two drops vs. one drop based on tear film concentrations, residual tear fluorescence, and area under the fluorescein-time curves (P ≥ 0.163). Reflex TTR varied from 20.2 to 30.5%/min and did not differ significantly (P = 0.935) among volumes instilled (10-100 μl). The volumetric capacity of the canine palpebral fissure (31.3 ± 8.9 μl) was positively correlated with the palpebral fissure length (P = 0.023). Excess solution was spilled over the periocular skin in a volume-dependent manner, predominantly in the lower eyelid, medial canthus and lateral canthus. In sum, a single drop is sufficient for topical administration in dogs. Any excess is lost predominantly by spillage over the periocular skin as well as accelerated nasolacrimal drainage.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: