Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 74 papers

Single-cell profiling reveals differences between human classical adenocarcinoma and mucinous adenocarcinoma.

  • Fang-Jie Hu‎ et al.
  • Communications biology‎
  • 2023‎

Colorectal cancer is a highly heterogeneous disease. Most colorectal cancers are classical adenocarcinoma, and mucinous adenocarcinoma is a unique histological subtype that is known to respond poorly to chemoradiotherapy. The difference in prognosis between mucinous adenocarcinoma and classical adenocarcinoma is controversial. Here, to gain insight into the differences between classical adenocarcinoma and mucinous adenocarcinoma, we analyse 7 surgical tumour samples from 4 classical adenocarcinoma and 3 mucinous adenocarcinoma patients by single-cell RNA sequencing. Our results indicate that mucinous adenocarcinoma cancer cells have goblet cell-like properties, and express high levels of goblet cell markers (REG4, SPINK4, FCGBP and MUC2) compared to classical adenocarcinoma cancer cells. TFF3 is essential for the transcriptional regulation of these molecules, and may cooperate with RPS4X to eventually lead to the mucinous adenocarcinoma mucus phenotype. The observed molecular characteristics may be critical in the specific biological behavior of mucinous adenocarcinoma.


EPHA mutation as a predictor of immunotherapeutic efficacy in lung adenocarcinoma.

  • Hua Bai‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2020‎

Ephrin type-A receptors (EPHA) are members of family of receptor tyrosine kinases and are related to tumor immunogenicity and immune microenvironment, however, the association between EPHA mutation (EPHAmut ) and efficacy of immune checkpoint inhibitors (ICIs) has not been investigated in non-small cell lung cancer (NSCLC).


Distinct immune microenvironment of lung adenocarcinoma in never-smokers from smokers.

  • Wenxin Luo‎ et al.
  • Cell reports. Medicine‎
  • 2023‎

Lung cancer in never-smokers (LCINS) presents clinicopathological and molecular features distinct from that in smokers. Tumor microenvironment (TME) plays important roles in cancer progression and therapeutic response. To decipher the difference in TME between never-smoker and smoker lung cancers, we conduct single-cell RNA sequencing on 165,753 cells from 22 treatment-naive lung adenocarcinoma (LUAD) patients. We find that the dysfunction of alveolar cells induced by cigarette smoking contributes more to the aggressiveness of smoker LUADs, while the immunosuppressive microenvironment exerts more effects on never-smoker LUADs' aggressiveness. Moreover, the SPP1hi pro macrophage is identified to be another independent source of monocyte-derived macrophage. Importantly, higher expression of immune checkpoint CD47 and lower expression of major histocompatibility complex (MHC)-I in cancer cells of never-smoker LUADs imply that CD47 may be a better immunotherapy target for LCINS. Therefore, this study reveals the difference of tumorigenesis between never-smoker and smoker LUADs and provides a potential immunotherapy strategy for LCINS.


Bmi-1 directly upregulates glucose transporter 1 in human gastric adenocarcinoma.

  • Ying Guo‎ et al.
  • Open life sciences‎
  • 2022‎

This study aimed to investigate whether and how Moloney murine leukemia virus integration site 1 (Bmi-1) plays a role in the regulation of glucose transporter 1 (GLUT1) in gastric adenocarcinoma (GAC). GAC and matched noncancerous tissues were obtained from GAC patients who underwent surgical treatment at the China-Japan Union Hospital, Jilin University (Changchun, Jilin, China). The human GAC cell line AGS and the gastric epithelial cell line GES-1 were used for in vitro studies. BALB/c nude mice were used for in vivo studies. The Bmi-1 and GLUT1 protein levels were significantly greater in human tissues from GAC patients and AGS cells in comparison with controls. Silencing of Bmi-1 resulted in significant decrease in glucose uptake, lactate levels, and GLUT1 expression. In vivo 18F-deoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) imaging studies indicated that the nude mice bearing xenografts of AGS cells treated with Bmi-1-specific small interfering RNA (siRNA) had a significantly lower maximum standardized uptake value (SUVmax) in comparison with the control mice. Thus, Bmi-1 directly upregulates GLUT1 gene expression, through which it is involved in enhancing glucose uptake in GAC. The results also provide scientific evidence for 18F-FDG PET/CT imaging to evaluate Bmi-1 and glucose uptake in GAC.


Characteristics of genomic alterations of lung adenocarcinoma in young never-smokers.

  • Wenxin Luo‎ et al.
  • International journal of cancer‎
  • 2018‎

Non-small-cell lung cancer (NSCLC) has been recognized as a highly heterogeneous disease with phenotypic and genotypic diversity in each subgroup. While never-smoker patients with NSCLC have been well studied through next generation sequencing, we have yet to recognize the potentially unique molecular features of young never-smoker patients with NSCLC. In this study, we conducted whole genome sequencing (WGS) to characterize the genomic alterations of 36 never-smoker Chinese patients, who were diagnosed with lung adenocarcinoma (LUAD) at 45 years or younger. Besides the well-known gene mutations (e.g., TP53 and EGFR), our study identified several potential lung cancer-associated gene mutations that were rarely reported (e.g., HOXA4 and MST1). The lung cancer-related copy number variations (e.g., EGFR and CDKN2A) were enriched in our cohort (41.7%, 15/36) and the lung cancer-related structural variations (e.g., EML4-ALK and KIF5B-RET) were commonly observed (22.2%, 8/36). Notably, new fusion partners of ALK (SMG6-ALK) and RET (JMJD1C-RET) were found. Furthermore, we observed a high prevalence (63.9%, 23/36) of potentially targetable genomic alterations in our cohort. Finally, we identified germline mutations in BPIFB1 (rs6141383, p.V284M), CHD4 (rs74790047, p.D140E), PARP1 (rs3219145, p.K940R), NUDT1 (rs4866, p.V83M), RAD52 (rs4987207, p.S346*), and MFI2 (rs17129219, p.A559T) were significantly enriched in the young never-smoker patients with LUAD when compared with the in-house noncancer database (p < 0.05). Our study provides a detailed mutational portrait of LUAD occurring in young never-smokers and gives insights into the molecular pathogenesis of this distinct subgroup of NSCLC.


Integrative analysis of TP53 mutations in lung adenocarcinoma for immunotherapies and prognosis.

  • He Li‎ et al.
  • BMC bioinformatics‎
  • 2023‎

The TP53 tumor suppressor gene is one of the most mutated genes in lung adenocarcinoma (LUAD) and plays a vital role in regulating the occurrence and progression of cancer. We aimed to elucidate the association between TP53 mutations, response to immunotherapies and the prognosis of LUAD.


Andrographolide Induces Noxa-Dependent Apoptosis by Transactivating ATF4 in Human Lung Adenocarcinoma Cells.

  • Junqian Zhang‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Lung adenocarcinoma is the most common pathological type of lung cancer with poor patient outcomes; therefore, developing novel therapeutic agents is critically needed. Andrographolide (AD), a major active component derived from the traditional Chinese medicine (TCM) Andrographis paniculate, is a potential antitumor drug, but the role of AD in lung adenocarcinoma remains poorly understood. In the present study, we demonstrated that AD inhibited the proliferation of broad-spectrum lung cancer cell lines in a dose-dependent manner. Meanwhile, we found that a high dose of AD induced Noxa-dependent apoptosis in human lung adenocarcinoma cells (A549 and H1299). Further studies revealed that Noxa was transcriptionally activated by activating transcription factor 4 (ATF4) in AD-induced apoptosis. Knockdown of ATF4 by small interfering RNA (siRNA) significantly diminished the transactivation of Noxa as well as the apoptotic population induced by AD. These results of the present study indicated that AD induced apoptosis of human lung adenocarcinoma cells by activating the ATF4/Noxa axis and supporting the development of AD as a promising candidate for the new era of chemotherapy.


Deciphering cell lineage specification of human lung adenocarcinoma with single-cell RNA sequencing.

  • Zhoufeng Wang‎ et al.
  • Nature communications‎
  • 2021‎

Lung adenocarcinomas (LUAD) arise from precancerous lesions such as atypical adenomatous hyperplasia, which progress into adenocarcinoma in situ and minimally invasive adenocarcinoma, then finally into invasive adenocarcinoma. The cellular heterogeneity and molecular events underlying this stepwise progression remain unclear. In this study, we perform single-cell RNA sequencing of 268,471 cells collected from 25 patients in four histologic stages of LUAD and compare them to normal cell types. We detect a group of cells closely resembling alveolar type 2 cells (AT2) that emerged during atypical adenomatous hyperplasia and whose transcriptional profile began to diverge from that of AT2 cells as LUAD progressed, taking on feature characteristic of stem-like cells. We identify genes related to energy metabolism and ribosome synthesis that are upregulated in early stages of LUAD and may promote progression. MDK and TIMP1 could be potential biomarkers for understanding LUAD pathogenesis. Our work shed light on the underlying transcriptional signatures of distinct histologic stages of LUAD progression and our findings may facilitate early diagnosis.


CHKA mediates the poor prognosis of lung adenocarcinoma and acts as a prognostic indicator.

  • Li Zhang‎ et al.
  • Oncology letters‎
  • 2016‎

Choline kinase α (CHKA), the enzyme that converts choline to phosphocholine, has been studied in human carcinogenesis widely. However, the expression and underlying clinicopathological characteristics of CHKA in lung adenocarcinoma remains elusive. In the present study, a tissue microarray of 119 pairs of lung adenocarcinoma samples and corresponding adjacent normal mucosae was used to analysis CHKA expression by immunohistochemistry, and CHKA was observed to exhibit enhanced expression in lung adenocarcinoma tissues. Elevated CHKA expression in lung adenocarcinoma tissues at the gene and protein level was observed. The levels of CHKA expression were closely associated with the poor prognosis status of lung adenocarcinoma patients. Furthermore, certain clinicopathological characteristics such as tumor diameter and differentiation were observed to be significant in those lung adenocarcinoma patients who displayed enhanced CHKA expression. The analysis of CHKA expression could provide a more precise way to predict the prognosis of lung adenocarcinoma patients. Collectively, the present study revealed a novel biomarker in lung adenocarcinoma, and indicated that CHKA may be a promising prognostic marker and therapeutic target for lung adenocarcinoma.


Tumor-Associated Regulatory T Cell Expression of LAIR2 Is Prognostic in Lung Adenocarcinoma.

  • Dalam Ly‎ et al.
  • Cancers‎
  • 2021‎

Cancer development requires a permissive microenvironment that is shaped by interactions between tumor cells, stroma, and the surrounding matrix. As collagen receptors, the leukocyte-associated immunoglobulin-like receptor (LAIR) family allows the immune system to interact with the extracellular matrix. However, little is known about their role in regulating tumor immunity and cancer progression.


KRAS mutation-induced upregulation of PD-L1 mediates immune escape in human lung adenocarcinoma.

  • Nan Chen‎ et al.
  • Cancer immunology, immunotherapy : CII‎
  • 2017‎

It was reported that PD-L1 expression was correlated with genetic alterations. Whether PD-L1 was regulated by mutant Kirsten rat sarcoma viral oncogene homolog (KRAS) in non-small-cell lung cancer (NSCLC) and the underlying molecular mechanism were largely unknown. In this study, we investigated the correlation between PD-L1 expression and KRAS mutation and the functional significance of PD-1/PD-L1 blockade in KRAS-mutant lung adenocarcinoma. We found that PD-L1 expression was associated with KRAS mutation both in the human lung adenocarcinoma cell lines and tissues. PD-L1 was up-regulated by KRAS mutation through p-ERK but not p-AKT signaling. We also found that KRAS-mediated up-regulation of PD-L1 induced the apoptosis of CD3-positive T cells which was reversed by anti-PD-1 antibody (Pembrolizumab) or ERK inhibitor. PD-1 blocker or ERK inhibitor could recover the anti-tumor immunity of T cells and decrease the survival rates of KRAS-mutant NSCLC cells in co-culture system in vitro. However, Pembrolizumab combined with ERK inhibitor did not show synergistic effect on killing tumor cells in co-culture system. Our study demonstrated that KRAS mutation could induce PD-L1 expression through p-ERK signaling in lung adenocarcinoma. Blockade of PD-1/PD-L1 pathway may be a promising therapeutic strategy for human KRAS-mutant lung adenocarcinoma.


DLGAP5 promotes lung adenocarcinoma growth via upregulating PLK1 and serves as a therapeutic target.

  • Maojian Chen‎ et al.
  • Journal of translational medicine‎
  • 2024‎

Human discs large-associated protein 5 (DLGAP5) is reported to play a pivotal role in regulating the cell cycle and implicate in tumorigenesis and progression of various cancers. Our current research endeavored to explore the prognostic value, immune implication, biological function and targeting strategy of DLGAP5 in LUAD through approaches including bioinformatics, network pharmacology analysis and experimental study.


Clinical Implications of the Autophagy Core Gene Variations in Advanced Lung Adenocarcinoma Treated with Gefitinib.

  • Jupeng Yuan‎ et al.
  • Scientific reports‎
  • 2017‎

EGFR-TKIs show dramatic treatment benefits for advanced lung adenocarcinoma patients with activating EGFR mutations. Considering the essential role of autophagy in EGFR-TKIs treatments, we hypothesized that genetic variants in autophagy core genes might contribute to outcomes of advanced lung adenocarcinoma treated with gefitinib. We systematically examined 27 potentially functional genetic polymorphisms in 11 autophagy core genes among 108 gefitinib-treated advanced lung adenocarcinoma patients. We found that ATG10 rs10036653, ATG12 rs26538, ATG16L1 rs2241880 and ATG16L2 rs11235604 were significantly associated with survival of lung adenocarcinoma patients (all P < 0.05). Among EGFR-mutant patients, ATG5 rs688810, ATG5 rs510432, ATG7 rs8154, ATG10 rs10036653, ATG12 rs26538, ATG16L1 rs2241880 and ATG16L2 rs11235604 significantly contributed to disease prognosis. We also found that ATG5 rs510432, ATG5 rs688810, ATG10 rs10036653 and ATG10 rs1864182 were associated with primary or acquired resistance to gefitinib. Functional analyses of ATG10 rs10036653 polymorphism suggested that ATG10 A allele might increase transcription factor OCT4 binding affinity compared to the T allele in lung cancer cells. Our results indicate that autophagy core genetic variants show potential clinical implications in gefitinib treatment, especially among advanced lung adenocarcinoma patients, highlighting the possibility of patient-tailored decisions during EGFR-TKIs based on both germline and somatic variation detection.


Multimodal fusion of liquid biopsy and CT enhances differential diagnosis of early-stage lung adenocarcinoma.

  • Yanwei Zhang‎ et al.
  • NPJ precision oncology‎
  • 2024‎

This research explores the potential of multimodal fusion for the differential diagnosis of early-stage lung adenocarcinoma (LUAD) (tumor sizes < 2 cm). It combines liquid biopsy biomarkers, specifically extracellular vesicle long RNA (evlRNA) and the computed tomography (CT) attributes. The fusion model achieves an impressive area under receiver operating characteristic curve (AUC) of 91.9% for the four-classification of adenocarcinoma, along with a benign-malignant AUC of 94.8% (sensitivity: 89.1%, specificity: 94.3%). These outcomes outperform the diagnostic capabilities of the single-modal models and human experts. A comprehensive SHapley Additive exPlanations (SHAP) is provided to offer deep insights into model predictions. Our findings reveal the complementary interplay between evlRNA and image-based characteristics, underscoring the significance of integrating diverse modalities in diagnosing early-stage LUAD.


Dual-energy CT-based radiomics in predicting EGFR mutation status non-invasively in lung adenocarcinoma.

  • Jing-Wen Ma‎ et al.
  • Heliyon‎
  • 2024‎

Patients with epidermal growth factor receptor (EGFR) mutations in lung adenocarcinoma (LUAD) can benefit from individualized targeted therapy. This study aims to develop, compare, analyse prediction models based on dual-energy spectral computed tomography (DESCT) and CT-based radiomic features to non-invasively predict EGFR mutation status in LUAD.


The expression of plakoglobin is a potential prognostic biomarker for patients with surgically resected lung adenocarcinoma.

  • Xiaobo He‎ et al.
  • Oncotarget‎
  • 2016‎

This study aimed to explore the relationship between plakoglobin expression and clinical data in the patients with surgically resected lung adenocarcinoma.


Leptomeningeal enhancement in magnetic resonance imaging predicts poor prognosis in lung adenocarcinoma patients with leptomeningeal metastasis.

  • Xiaoxing Gao‎ et al.
  • Thoracic cancer‎
  • 2022‎

To investigate the prognostic value of magnetic resonance imaging (MRI) findings in the prognosis of patients with leptomeningeal metastasis from lung adenocarcinoma.


m6A RNA Methylation Regulators Participate in the Malignant Progression and Have Clinical Prognostic Value in Lung Adenocarcinoma.

  • Fangwei Li‎ et al.
  • Frontiers in genetics‎
  • 2020‎

Abnormal methylation of N6 adenosine (m6A) in RNA plays a crucial role in the pathogenesis of many types of tumors. However, little is known about m6A RNA methylation in lung adenocarcinoma. This study aimed to identify the value of m6A RNA methylation regulators in the malignant progression and clinical prognosis of lung adenocarcinoma. The RNA-seq transcriptome data and corresponding clinical information of lung adenocarcinoma were downloaded from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) database. Then the identification of differentially expressed m6A RNA methylation regulators between cancer samples and normal control samples, different subgroups by consensus expression of these regulators and the prognostic signature were achieved using R software with multiple corresponding packages. The results showed that the expression levels of HNRNPC, YTHDF1, KIAA1429, RBM15, YTHDF2, and METTL3 in cancer group were significantly up-regulated (P < 0.05), while expression levels of FTO, ZC3H13, METTL14, YTHDC1 and WTAP in cancer group were significantly down-regulated (P < 0.05) compared with control group. Two subgroups identified by consensus expression of these regulators were closely related to the clinicopathological features, clinical outcomes and malignancy of lung adenocarcinoma. In addition, a 3-gene risk signature including KIAA1429, RBM15, and HNRNPC was constructed and the lung adenocarcinoma patients in TCGA database were divided into high-risk group and low-risk group based on the median risk score. In conclusion, the prognostic signature-based risk score calculated according to the expression levels of KIAA1429, RBM15, and HNRNPC, was not only strongly associated with clinical outcomes and clinicopathological features, but also an independent prognostic factor in lung adenocarcinoma.


Loss of ARID1A Expression Correlates With Tumor Differentiation and Tumor Progression Stage in Pancreatic Ductal Adenocarcinoma.

  • Li Zhang‎ et al.
  • Technology in cancer research & treatment‎
  • 2018‎

Mutations in the AT-rich interactive domain 1A gene, which encodes a subunit of the Switch/Sucrose nonfermentable chromatin remodeling complex, can result in loss of protein expression and are associated with different cancers. Here, we used immunohistochemistry to investigate the significance of AT-rich interactive domain 1A loss in 73 pancreatic ductal adenocarcinoma cases with paired paracancerous normal pancreatic tissues. The relationship between levels of the AT-rich interactive domain 1A protein product, BAF250a, and clinicopathological parameters in the 73 pancreatic cancer specimens was also analyzed. We found that the expression of AT-rich interactive domain 1A in normal pancreatic tissue was higher than that in tumor tissue. Loss of AT-rich interactive domain 1A expression in pancreatic tumors was associated with tumor differentiation ( P = .002) and tumor stage ( P = .048). Meanwhile, BAF250a protein levels were not related to lymph node metastasis, distant metastasis, sex, or age and were not associated with survival. Transfection of the pancreatic cancer cell lines AsPC-1 and PANC-1 with small-interfering RNA specific for AT-rich interactive domain 1A resulted in elevated messenger RNA and protein expression levels of B-cell lymphoma-2 (Bcl-2), CyclinD1, and Kirsten rat sarcoma viral oncogene (KRAS). The AT-rich interactive domain 1A expression level in the cells was increased following microRNA-31 (miR-31) inhibitor transfection. Our data provide additional evidence that AT-rich interactive domain 1A might function as a tumor suppressor gene in pancreatic carcinogenesis.


Differential integrated stress response and asparagine production drive symbiosis and therapy resistance of pancreatic adenocarcinoma cells.

  • Christopher J Halbrook‎ et al.
  • Nature cancer‎
  • 2022‎

The pancreatic tumor microenvironment drives deregulated nutrient availability. Accordingly, pancreatic cancer cells require metabolic adaptations to survive and proliferate. Pancreatic cancer subtypes have been characterized by transcriptional and functional differences, with subtypes reported to exist within the same tumor. However, it remains unclear if this diversity extends to metabolic programming. Here, using metabolomic profiling and functional interrogation of metabolic dependencies, we identify two distinct metabolic subclasses among neoplastic populations within individual human and mouse tumors. Furthermore, these populations are poised for metabolic cross-talk, and in examining this, we find an unexpected role for asparagine supporting proliferation during limited respiration. Constitutive GCN2 activation permits ATF4 signaling in one subtype, driving excess asparagine production. Asparagine release provides resistance during impaired respiration, enabling symbiosis. Functionally, availability of exogenous asparagine during limited respiration indirectly supports maintenance of aspartate pools, a rate-limiting biosynthetic precursor. Conversely, depletion of extracellular asparagine with PEG-asparaginase sensitizes tumors to mitochondrial targeting with phenformin.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: