Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis.

  • Daniele Ghezzi‎ et al.
  • American journal of human genetics‎
  • 2012‎

Dysfunction of mitochondrial respiration is an increasingly recognized cause of isolated hypertrophic cardiomyopathy. To gain insight into the genetic origin of this condition, we used next-generation exome sequencing to identify mutations in MTO1, which encodes mitochondrial translation optimization 1. Two affected siblings carried a maternal c.1858dup (p.Arg620Lysfs(∗)8) frameshift and a paternal c.1282G>A (p.Ala428Thr) missense mutation. A third unrelated individual was homozygous for the latter change. In both humans and yeast, MTO1 increases the accuracy and efficiency of mtDNA translation by catalyzing the 5-carboxymethylaminomethylation of the wobble uridine base in three mitochondrial tRNAs (mt-tRNAs). Accordingly, mutant muscle and fibroblasts showed variably combined reduction in mtDNA-dependent respiratory chain activities. Reduced respiration in mutant cells was corrected by expressing a wild-type MTO1 cDNA. Conversely, defective respiration of a yeast mto1Δ strain failed to be corrected by an Mto1(Pro622∗) variant, equivalent to human MTO1(Arg620Lysfs∗8), whereas incomplete correction was achieved by an Mto1(Ala431Thr) variant, corresponding to human MTO1(Ala428Thr). The respiratory yeast phenotype was dramatically worsened in stress conditions and in the presence of a paromomycin-resistant (P(R)) mitochondrial rRNA mutation. Lastly, in vivo mtDNA translation was impaired in the mutant yeast strains.


Mutations in GTPBP3 cause a mitochondrial translation defect associated with hypertrophic cardiomyopathy, lactic acidosis, and encephalopathy.

  • Robert Kopajtich‎ et al.
  • American journal of human genetics‎
  • 2014‎

Respiratory chain deficiencies exhibit a wide variety of clinical phenotypes resulting from defective mitochondrial energy production through oxidative phosphorylation. These defects can be caused by either mutations in the mtDNA or mutations in nuclear genes coding for mitochondrial proteins. The underlying pathomechanisms can affect numerous pathways involved in mitochondrial physiology. By whole-exome and candidate gene sequencing, we identified 11 individuals from 9 families carrying compound heterozygous or homozygous mutations in GTPBP3, encoding the mitochondrial GTP-binding protein 3. Affected individuals from eight out of nine families presented with combined respiratory chain complex deficiencies in skeletal muscle. Mutations in GTPBP3 are associated with a severe mitochondrial translation defect, consistent with the predicted function of the protein in catalyzing the formation of 5-taurinomethyluridine (τm(5)U) in the anticodon wobble position of five mitochondrial tRNAs. All case subjects presented with lactic acidosis and nine developed hypertrophic cardiomyopathy. In contrast to individuals with mutations in MTO1, the protein product of which is predicted to participate in the generation of the same modification, most individuals with GTPBP3 mutations developed neurological symptoms and MRI involvement of thalamus, putamen, and brainstem resembling Leigh syndrome. Our study of a mitochondrial translation disorder points toward the importance of posttranscriptional modification of mitochondrial tRNAs for proper mitochondrial function.


MTO1 mutations are associated with hypertrophic cardiomyopathy and lactic acidosis and cause respiratory chain deficiency in humans and yeast.

  • Enrico Baruffini‎ et al.
  • Human mutation‎
  • 2013‎

We report three families presenting with hypertrophic cardiomyopathy, lactic acidosis, and multiple defects of mitochondrial respiratory chain (MRC) activities. By direct sequencing of the candidate gene MTO1, encoding the mitochondrial-tRNA modifier 1, or whole exome sequencing analysis, we identified novel missense mutations. All MTO1 mutations were predicted to be deleterious on MTO1 function. Their pathogenic role was experimentally validated in a recombinant yeast model, by assessing oxidative growth, respiratory activity, mitochondrial protein synthesis, and complex IV activity. In one case, we also demonstrated that expression of wt MTO1 could rescue the respiratory defect in mutant fibroblasts. The severity of the yeast respiratory phenotypes partly correlated with the different clinical presentations observed in MTO1 mutant patients, although the clinical outcome was highly variable in patients with the same mutation and seemed also to depend on timely start of pharmacological treatment, centered on the control of lactic acidosis by dichloroacetate. Our results indicate that MTO1 mutations are commonly associated with a presentation of hypertrophic cardiomyopathy, lactic acidosis, and MRC deficiency, and that ad hoc recombinant yeast models represent a useful system to test the pathogenic potential of uncommon variants, and provide insight into their effects on the expression of a biochemical phenotype.


A homozygous mutation in LYRM7/MZM1L associated with early onset encephalopathy, lactic acidosis, and severe reduction of mitochondrial complex III activity.

  • Federica Invernizzi‎ et al.
  • Human mutation‎
  • 2013‎

Mutations in nuclear genes associated with defective complex III (cIII) of the mitochondrial respiratory chain are rare, having been found in only two cIII assembly factors and, as private changes in single families, three cIII structural subunits. Recently, human LYRM7/MZM1L, the ortholog of yeast MZM1, has been identified as a new assembly factor for cIII. In a baby patient with early onset, severe encephalopathy, lactic acidosis and profound, isolated cIII deficiency in skeletal muscle, we identified a disease-segregating homozygous mutation (c.73G>A) in LYRM7/MZM1L, predicting a drastic change in a highly conserved amino-acid residue (p.Asp25Asn). In a mzm1Δ yeast strain, the expression of a mzm1(D25N) mutant allele caused temperature-sensitive respiratory growth defect, decreased oxygen consumption, impaired maturation/stabilization of the Rieske Fe-S protein, and reduced complex III activity and amount. LYRM7/MZM1L is a novel disease gene, causing cIII-defective, early onset, severe mitochondrial encephalopathy.


The isolated carboxy-terminal domain of human mitochondrial leucyl-tRNA synthetase rescues the pathological phenotype of mitochondrial tRNA mutations in human cells.

  • Elena Perli‎ et al.
  • EMBO molecular medicine‎
  • 2014‎

Mitochondrial (mt) diseases are multisystem disorders due to mutations in nuclear or mtDNA genes. Among the latter, more than 50% are located in transfer RNA (tRNA) genes and are responsible for a wide range of syndromes, for which no effective treatment is available at present. We show that three human mt aminoacyl-tRNA syntethases, namely leucyl-, valyl-, and isoleucyl-tRNA synthetase are able to improve both viability and bioenergetic proficiency of human transmitochondrial cybrid cells carrying pathogenic mutations in the mt-tRNA(Ile) gene. Importantly, we further demonstrate that the carboxy-terminal domain of human mt leucyl-tRNA synthetase is both necessary and sufficient to improve the pathologic phenotype associated either with these "mild" mutations or with the "severe" m.3243A>G mutation in the mt-tRNA(L)(eu(UUR)) gene. Furthermore, we provide evidence that this small, non-catalytic domain is able to directly and specifically interact in vitro with human mt-tRNA(Leu(UUR)) with high affinity and stability and, with lower affinity, with mt-tRNA(Ile). Taken together, our results sustain the hypothesis that the carboxy-terminal domain of human mt leucyl-tRNA synthetase can be used to correct mt dysfunctions caused by mt-tRNA mutations.


Clinical, biochemical and genetic spectrum of 70 patients with ACAD9 deficiency: is riboflavin supplementation effective?

  • Birgit M Repp‎ et al.
  • Orphanet journal of rare diseases‎
  • 2018‎

Mitochondrial acyl-CoA dehydrogenase family member 9 (ACAD9) is essential for the assembly of mitochondrial respiratory chain complex I. Disease causing biallelic variants in ACAD9 have been reported in individuals presenting with lactic acidosis and cardiomyopathy.


Cavitating leukoencephalopathy with multiple mitochondrial dysfunction syndrome and NFU1 mutations.

  • Federica Invernizzi‎ et al.
  • Frontiers in genetics‎
  • 2014‎

Multiple Mitochondrial Dysfunction Syndrome (MMDS) comprises a group of severe autosomal recessive diseases with onset in early infancy and characterized by a systemic disorder of energy metabolism, resulting in weakness, respiratory failure, lack of neurological development, lactic acidosis, and early death. Biochemical findings include defects of complexes I, II, and III of the mitochondrial respiratory chain and severe deficiency of Pyruvate dehydrogenase complex (PDHc). Three genes have been associated with MMDS since now: NFU1, BOLA3, and IBA57. We describe an Italian male patient presenting with severe psychomotor regression after an infectious episode, lactic acidosis, hyperglycinemia, reduction of respiratory chain complex II associated with a marked deficiency of PDHc activity. He carried two heterozygous mutations in NFU1, one novel (p.Cys210Phe) and one previously reported (p.Gly189Arg) missense change affecting highly conserved residues. A severe leukoencephalopathy with cavitations in deep white matter was disclosed at brain MRI, suggesting a peculiar neuroradiological phenotype associated with defect in this gene.


A novel de novo dominant mutation in ISCU associated with mitochondrial myopathy.

  • Andrea Legati‎ et al.
  • Journal of medical genetics‎
  • 2017‎

Hereditary myopathy with lactic acidosis and myopathy with deficiency of succinate dehydrogenase and aconitase are variants of a recessive disorder characterised by childhood-onset early fatigue, dyspnoea and palpitations on trivial exercise. The disease is non-progressive, but life-threatening episodes of widespread weakness, metabolic acidosis and rhabdomyolysis may occur. So far, this disease has been molecularly defined only in Swedish patients, all homozygous for a deep intronic splicing affecting mutation in ISCU encoding a scaffold protein for the assembly of iron-sulfur (Fe-S) clusters. A single Scandinavian family was identified with a different mutation, a missense change in compound heterozygosity with the common intronic mutation. The aim of the study was to identify the genetic defect in our proband.


Mutations in ELAC2 associated with hypertrophic cardiomyopathy impair mitochondrial tRNA 3'-end processing.

  • Makenzie Saoura‎ et al.
  • Human mutation‎
  • 2019‎

Mutations in either the mitochondrial or nuclear genomes are associated with a diverse group of human disorders characterized by impaired mitochondrial respiration. Within this group, an increasing number of mutations have been identified in nuclear genes involved in mitochondrial RNA metabolism, including ELAC2. The ELAC2 gene codes for the mitochondrial RNase Z, responsible for endonucleolytic cleavage of the 3' ends of mitochondrial pre-tRNAs. Here, we report the identification of 16 novel ELAC2 variants in individuals presenting with mitochondrial respiratory chain deficiency, hypertrophic cardiomyopathy (HCM), and lactic acidosis. We provide evidence for the pathogenicity of the novel missense variants by studying the RNase Z activity in an in vitro system. We also modeled the residues affected by a missense mutation in solved RNase Z structures, providing insight into enzyme structure and function. Finally, we show that primary fibroblasts from the affected individuals have elevated levels of unprocessed mitochondrial RNA precursors. Our study thus broadly confirms the correlation of ELAC2 variants with severe infantile-onset forms of HCM and mitochondrial respiratory chain dysfunction. One rare missense variant associated with the occurrence of prostate cancer (p.Arg781His) impairs the mitochondrial RNase Z activity of ELAC2, suggesting a functional link between tumorigenesis and mitochondrial RNA metabolism.


Mutations in FBXL4, encoding a mitochondrial protein, cause early-onset mitochondrial encephalomyopathy.

  • Xiaowu Gai‎ et al.
  • American journal of human genetics‎
  • 2013‎

Whole-exome sequencing and autozygosity mapping studies, independently performed in subjects with defective combined mitochondrial OXPHOS-enzyme deficiencies, identified a total of nine disease-segregating FBXL4 mutations in seven unrelated mitochondrial disease families, composed of six singletons and three siblings. All subjects manifested early-onset lactic acidemia, hypotonia, and developmental delay caused by severe encephalomyopathy consistently associated with progressive cerebral atrophy and variable involvement of the white matter, deep gray nuclei, and brainstem structures. A wide range of other multisystem features were variably seen, including dysmorphism, skeletal abnormalities, poor growth, gastrointestinal dysmotility, renal tubular acidosis, seizures, and episodic metabolic failure. Mitochondrial respiratory chain deficiency was present in muscle or fibroblasts of all tested individuals, together with markedly reduced oxygen consumption rate and hyperfragmentation of the mitochondrial network in cultured cells. In muscle and fibroblasts from several subjects, substantially decreased mtDNA content was observed. FBXL4 is a member of the F-box family of proteins, some of which are involved in phosphorylation-dependent ubiquitination and/or G protein receptor coupling. We also demonstrate that FBXL4 is targeted to mitochondria and localizes in the intermembrane space, where it participates in an approximately 400 kDa protein complex. These data strongly support a role for FBXL4 in controlling bioenergetic homeostasis and mtDNA maintenance. FBXL4 mutations are a recurrent cause of mitochondrial encephalomyopathy onset in early infancy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: