2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 113 papers

Ethanol intoxication increases hepatic N-lysyl protein acetylation.

  • Matthew J Picklo‎
  • Biochemical and biophysical research communications‎
  • 2008‎

The acetylation of the epsilon-amino group of lysine to form N-acetyl lysine (N-AcLys)-modified proteins regulates the activity of metabolic proteins. Because of the multiple effects of ethanol upon hepatic metabolism, it was hypothesized that ethanol exposure increases the hepatic content of N-AcLys-modified proteins. To test this hypothesis, rats or mice were exposed to ethanol using a liquid diet regimen. Content of N-AcLys-modified proteins was elevated more than 5-fold after 6 weeks of ethanol exposure and persisted after ethanol withdrawal. Use of CYP2E1-knockout mice demonstrated that ethanol-induced acetylation was not dependent solely on CYP2E1 expression. The mitochondrial content of N-AcLys-modified proteins was elevated almost 5-fold following 6 weeks of ethanol exposure. Mitochondrial content of the deacetylase Sirt3 was unchanged by 6 weeks of ethanol exposure. These data indicate ethanol intoxication changes the acetylation status of, and likely the activity of, multiple mitochondrial proteins.


Helicobacter pylori regulates p21(WAF1) by histone H4 acetylation.

  • Guoqing Xia‎ et al.
  • Biochemical and biophysical research communications‎
  • 2008‎

Helicobacter pylori are bacteria that colonize the stomach persistently, which confers risk of serious diseases, including peptic ulceration and gastric neoplasia. Aberrant expression of cell cycle control proteins has been demonstrated in H. pylori infected gastric epithelial cells, suggesting that perturbation of the cell cycle plays a role in the pathogenesis of various H. pylori associated diseases. In this study, we investigate the modulation of the cell cycle control protein p21(WAF1) by H. pylori in the gastric carcinoma cell line NCI-N87 and in primary gastric cells derived from healthy tissue. We observed an up-regulation of p21(WAF1) in both NCI-N87 and primary cells. Chromatin immunoprecipitation analysis revealed that the increased expression of p21(WAF1) induced by H. pylori is associated with the release of HDAC-1 from the p21(WAF1) promoter and hyper-acetylation of histone H4. The elucidation of the epigenetic regulation of p21(WAF1) by H. pylori may help to dissect the pathogenetic mechanisms underlying the development and progression of H. pylori associated diseases.


Dynamics and regulation of lysine-acetylation during one-cell stage mouse embryos.

  • Keigo Matsubara‎ et al.
  • Biochemical and biophysical research communications‎
  • 2013‎

Previous studies show that treatment of zygotes with trichostatin A (TSA), a histone deacetylase inhibitor (HDACi), impacts the subsequent development to a blastocyst as well as full-term development. To reveal the dynamics of protein acetylation, with and without TSA treatment during one-cell stage, we examined oocytes and zygotes by immunofluorescence and Western Blot analyses using anti-acetylated lysine and acetylated α-tubulin antibodies. In unfertilized oocytes, lysine acetylation level was extremely low over all but faintly detected in the spindle. Once oocyte activation occurs, a dramatic increase of lysine acetylation signal was observed mostly in the pronuclei and a fiber-like structure, the so called midbody, suggesting activation coupled up-regulation of lysine acetylation presumably in histones and α-tubulin. TSA treatment resulted in significantly more hyperacetylation not only in the midbody structure and pronuclei but also in the whole cytoplasm. Consistently, Western Blot analysis revealed that acetylation of proteins about 53 kDa and 11 kDa in size, corresponding to α-tubulin and histone H4 sizes respectively, were increased mainly after oocyte activation and exclusively enhanced by TSA treatment in zygotes. To confirm this behavior of acetylated nonhistone proteins, acetylated α-tubulin was examined and found to be faintly detected in the spindle of MII oocytes but later in whole in the cell of zygotes including the midbody, which was enhanced by TSA treatment. To elucidate the mechanism underlying up-regulation of lysine acetylation following oocyte activation, we assayed the HDAC activity, and found significant reduction of HDAC activity from MII to zygotic stages. Taken together, our data indicate that HDACs play an important role in maintaining low acetylated status in a MII oocyte. However, once an oocyte has been activated, histone and nonhistone proteins including α-tubulin are hyperacetylated partly due to a reduction of HDAC activity. TSA treatment of zygotes enhances their acetylation, which could affect subsequent embryonic development.


Prediction of Nepsilon-acetylation on internal lysines implemented in Bayesian Discriminant Method.

  • Ao Li‎ et al.
  • Biochemical and biophysical research communications‎
  • 2006‎

Protein acetylation is an important and reversible post-translational modification (PTM), and it governs a variety of cellular dynamics and plasticity. Experimental identification of acetylation sites is labor-intensive and often limited by the availability of reagents such as acetyl-specific antibodies and optimization of enzymatic reactions. Computational analyses may facilitate the identification of potential acetylation sites and provide insights into further experimentation. In this manuscript, we present a novel protein acetylation prediction program named PAIL, prediction of acetylation on internal lysines, implemented in a BDM (Bayesian Discriminant Method) algorithm. The accuracies of PAIL are 85.13%, 87.97%, and 89.21% at low, medium, and high thresholds, respectively. Both Jack-Knife validation and n-fold cross-validation have been performed to show that PAIL is accurate and robust. Taken together, we propose that PAIL is a novel predictor for identification of protein acetylation sites and may serve as an important tool to study the function of protein acetylation. PAIL has been implemented in PHP and is freely available on a web server at: http://bioinformatics.lcd-ustc.org/pail.


Catalytic and glycan-binding abilities of ppGalNAc-T2 are regulated by acetylation.

  • Natacha Zlocowski‎ et al.
  • Biochemical and biophysical research communications‎
  • 2011‎

Post-translational acetylation is an important molecular regulatory mechanism affecting the biological activity of proteins. Polypeptide GalNAc transferases (ppGalNAc-Ts) are a family of enzymes that catalyze initiation of mucin-type O-glycosylation. All ppGalNAc-Ts in mammals are type II transmembrane proteins having a Golgi lumenal region that contains a catalytic domain with glycosyltransferase activity, and a C-terminal R-type ("ricin-like") lectin domain. We investigated the effect of acetylation on catalytic activity of glycosyltransferase, and on fine carbohydrate-binding specificity of the R-type lectin domain of ppGalNAc-T2. Acetylation effect on ppGalNAc-T2 biological activity in vitro was studied using a purified human recombinant ppGalNAc-T2. Mass spectrometric analysis of acetylated ppGalNAc-T2 revealed seven acetylated amino acids (K103, S109, K111, K363, S373, K521, and S529); the first five are located in the catalytic domain. Specific glycosyltransferase activity of ppGalNAc-T2 was reduced 95% by acetylation. The last two amino acids, K521 and S529, are located in the lectin domain, and their acetylation results in alteration of the carbohydrate-binding ability of ppGalNAc-T2. Direct binding assays showed that acetylation of ppGalNAc-T2 enhances the recognition to αGalNAc residue of MUC1αGalNAc, while competitive assays showed that acetylation modifies the fine GalNAc-binding form of the lectin domain. Taken together, these findings clearly indicate that biological activity (catalytic capacity and glycan-binding ability) of ppGalNAc-T2 is regulated by acetylation.


Reversible acetylation modulates p54nrb/NONO-mediated expression of the interleukin 8 gene.

  • Jae-Eun Ryu‎ et al.
  • Biochemical and biophysical research communications‎
  • 2022‎

The non-POU domain-containing octamer-binding protein (NONO, also referred to as p54nrb) is a multifunctional nuclear protein engaging in transcriptional regulation, mRNA splicing, nuclear retention of defective RNA, and DNA repair. Emerging evidence has demonstrated that p54nrb is subjected to various posttranslational modifications, including phosphorylation and methylation, which may be important regulators of its multifunction. However, among these modifications, direct evidence of p54nrb acetylation and its underlying mechanism remains unclear. In this study, we reported that lysine 371 of p54nrb was reversibly acetylated by the acetyltransferase general control non-depressible 5 (GCN5) and deacetylase sirtuin 1 (SIRT1), which was crucial for activity of p54nrb to inhibit interleukin-8 (IL-8) expression. Mechanistically, GCN5-mediated acetylation attenuates the recruitment of p54nrb on its core binding motif within the IL-8 gene promoter, preferentially increasing the expression of the IL-8 gene. In contrast, deacetylation by SIRT1 reverses this process. Altogether, our data suggest that reversible acetylation is an important switch for the multiple nuclear functions of p54nrb/NONO.


Acetylation of pregnane X receptor protein determines selective function independent of ligand activation.

  • Arunima Biswas‎ et al.
  • Biochemical and biophysical research communications‎
  • 2011‎

Pregnane X receptor (PXR), like other members of its class of nuclear receptors, undergoes post-translational modification [PTM] (e.g., phosphorylation). However, it is unknown if acetylation (a major and common form of protein PTM) is observed on PXR and, if it is, whether it is of functional consequence. PXR has recently emerged as an important regulatory protein with multiple ligand-dependent functions. In the present work we show that PXR is indeed acetylated in vivo. SIRT1 (Sirtuin 1), a NAD-dependent class III histone deacetylase and a member of the sirtuin family of proteins, partially mediates deacetylation of PXR. Most importantly, the acetylation status of PXR regulates its selective function independent of ligand activation.


SIRT1 and p300/CBP regulate the reversible acetylation of serine-threonine kinase NDR2.

  • Yunlan Tang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

Nuclear Dbf2-related kinase 2 (NDR2) is a highly conserved kinase that belongs to the NDR/LATS serine-threonine kinase family. NDR2 is involved in many cellular processes as a kinase or a scaffolding protein. As a known kinase, NDR2 requires self-phosphorylation and trans-phosphorylation to become fully active. However, beside phosphorylation, little is known about other posttranslational modifications of NDR2. In this study, we found that NDR2 can be specially acetylated at K463 in cells. In addition, SIRT1 acts as the major deacetylase for NDR2, while p300 and CBP function as specific acetyltransferases for NDR2. Interestingly, in SIRT1 deficient cells HDAC6 and HDAC1/2 can deacetylate NDR2, which provides a novel insight in deacetylation regulation. Our results demonstrate that NDR2 is a reversible acetylated kinase regulated by SIRT1 and p300/CBP.


The oncoprotein HBXIP promotes migration of breast cancer cells via GCN5-mediated microtubule acetylation.

  • Leilei Li‎ et al.
  • Biochemical and biophysical research communications‎
  • 2015‎

We have documented that the oncoprotein hepatitis B X-interacting protein (HBXIP) is able to promote migration of breast cancer cells. A subset of acetylated microtubules that accumulates in the cell leading edge is necessary for cell polarization and directional migration. In this study, we explored the hypothesis that HBXIP contributes to migration of breast cancer cells by supporting microtubule acetylation in breast cancer cells. We found that HBXIP could induce acetylated microtubules accumulating into the leading protrusion in wound-induced directional migration in breast cancer cells by immunofluorescence staining analysis. Interestingly, HBXIP was able to increase the acetylation of α-tubulin in the cells by immunofluorescence staining and Western blot analysis. Furthermore, we observed that acetyltransferase GCN5 was involved in the event that HBXIP induced increase of acetylated microtubules and their expansion in protrusions in breast cancer cells by Western blot analysis and immunofluorescence staining. Moreover, GCN5 was required for the HBXIP-enhanced migration of breast cancer cells by wound healing assay. Thus, we conclude that HBXIP promotes the migration of breast cancer cells through modulating microtubule acetylation mediated by GCN5. Therapeutically, HBXIP may serve as a novel target in breast cancer.


Aberrant histone acetylation contributes to elevated interleukin-6 production in rheumatoid arthritis synovial fibroblasts.

  • Takuma Tsuzuki Wada‎ et al.
  • Biochemical and biophysical research communications‎
  • 2014‎

Accumulating evidence indicates that epigenetic aberrations have a role in the pathogenesis of rheumatoid arthritis (RA). However, reports on histone modifications are as yet quite limited in RA. Interleukin (IL)-6 is an inflammatory cytokine which is known to be involved in the pathogenesis of RA. Here we report the role of histone modifications in elevated IL-6 production in RA synovial fibroblasts (SFs). The level of histone H3 acetylation (H3ac) in the IL-6 promoter was significantly higher in RASFs than osteoarthritis (OA) SFs. This suggests that chromatin structure is in an open or loose state in the IL-6 promoter in RASFs. Furthermore, curcumin, a histone acetyltransferase (HAT) inhibitor, significantly reduced the level of H3ac in the IL-6 promoter, as well as IL-6 mRNA expression and IL-6 protein secretion by RASFs. Taken together, it is suggested that hyperacetylation of histone H3 in the IL-6 promoter induces the increase in IL-6 production by RASFs and thereby participates in the pathogenesis of RA.


Both H4K20 mono-methylation and H3K56 acetylation mark transcription-dependent histone turnover in fission yeast.

  • Hanna Yang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

Nucleosome dynamics facilitated by histone turnover is required for transcription as well as DNA replication and repair. Histone turnover is often associated with various histone modifications such as H3K56 acetylation (H3K56Ac), H3K36 methylation (H3K36me), and H4K20 methylation (H4K20me). In order to correlate histone modifications and transcription-dependent histone turnover, we performed genome wide analyses for euchromatic regions in G2/M-arrested fission yeast. The results show that transcription-dependent histone turnover at 5' promoter and 3' termination regions is directly correlated with the occurrence of H3K56Ac and H4K20 mono-methylation (H4K20me1) in actively transcribed genes. Furthermore, the increase of H3K56Ac and H4K20me1 and antisense RNA production was observed in the absence of the histone H3K36 methyltransferase Set2 and histone deacetylase complex (HDAC) that are involved in the suppression of histone turnover within the coding regions. These results together indicate that H4K20me1 as well as H3K56Ac are bona fide marks for transcription-dependent histone turnover in fission yeast.


HDAC1 regulates the stability of glutamate carboxypeptidase II protein by modulating acetylation status of lysine 479 residue.

  • Ji-Young Choi‎ et al.
  • Biochemical and biophysical research communications‎
  • 2018‎

Our previous study showed that the level of glutamate carboxypeptidase II (GCPII) protein is regulated by valproic acid, a histone deacetylase (HDAC) inhibitor, through acetylation of lysine residue in the GCPII protein in human astrocytes, U-87MG. The present study further investigated which HDAC subtype is involved in the acetylation of GCPII. The results revealed that GCPII interacted with HDAC1 but not with HDAC2, HDAC3, HDAC4, HDAC5, and HDAC6. Overexpression of catalytic domain (1-56 aa)-deleted HDAC1, which poorly binds to GCPII, enhanced lysine acetylation in GCPII and increased the level of GCPII protein when compared with that of the wild-type HDAC1. Further experiments showed that HDAC1 regulated the stability of GCPII protein. These data suggest that acetylation of GCPII is facilitated by HDAC1, and the acetylated GCPII is more stable than the non-acetylated GCPII. Additional experiments using siRNA HDAC1 and by HDAC1 overexpression confirmed the role of HDAC1 in regulating the stability of GCPII protein. Further, database search of acetylation and ubiquitination sites showed four candidate lysine sites in human GCPII protein that can be both acetylated and ubiquitinylated (K207, K479, K491, and K699). Mutation (lysine residues to arginine (R)) analysis showed that in the presence of cycloheximide K479R- and K491R-hGCPII mutants were less ubiquitinylated and degraded, and decrease in the level of GCPII protein by HDAC1 was significantly blocked by K479R mutants. These data suggest that K479 is a possible site of acetylation or ubiquitination. Furthermore, the results also demonstrate that the stability of GCPII protein is regulated by HDAC1 through acetylation at the lysine 479 residue.


In-vitro acetylation of SARS-CoV and SARS-CoV-2 nucleocapsid proteins by human PCAF and GCN5.

  • Dai Hatakeyama‎ et al.
  • Biochemical and biophysical research communications‎
  • 2021‎

Recently, the novel coronavirus (SARS-CoV-2), which has spread from China to the world, was declared a global public health emergency, which causes lethal respiratory infections. Acetylation of several proteins plays essential roles in various biological processes, such as viral infections. We reported that the nucleoproteins of influenza virus and Zaire Ebolavirus were acetylated, suggesting that these modifications contributed to the molecular events involved in viral replication. Similar to influenza virus and Ebolavirus, the coronavirus also contains single-stranded RNA, as its viral genome interacts with the nucleocapsid (N) proteins. In this study, we report that SARS-CoV and SARS-CoV-2 N proteins are strongly acetylated by human histone acetyltransferases, P300/CBP-associated factor (PCAF), and general control nonderepressible 5 (GCN5), but not by CREB-binding protein (CBP) in vitro. Liquid chromatography-mass spectrometry analyses identified 2 and 12 acetyl-lysine residues from SARS-CoV and SARS-CoV-2 N proteins, respectively. Particularly in the SARS-CoV-2 N proteins, the acetyl-lysine residues were localized in or close to several functional sites, such as the RNA interaction domains and the M-protein interacting site. These results suggest that acetylation of SARS-CoV-2 N proteins plays crucial roles in their functions.


SIRT1 overexpression decreases cisplatin-induced acetylation of NF-κB p65 subunit and cytotoxicity in renal proximal tubule cells.

  • Yu Jin Jung‎ et al.
  • Biochemical and biophysical research communications‎
  • 2012‎

As the increased acetylation of p65 is linked to nuclear factor-κB (NF-κB) activation, the regulation of p65 acetylation can be a potential target for the treatment of inflammatory injury. Cisplatin-induced nephrotoxicity is an important issue in chemotherapy of cancer patients. SIRT1, nicotinamide adenine dinucleotide (NAD(+))-dependent protein deacetylase, has been implicated in a variety of cellular processes such as inflammatory injury and the control of multidrug resistance in cancer. However, there is no report on the effect of SIRT1 overexpression on cisplatin-induced acetylation of p65 subunit of NF-κB and cell injury. To investigate the effect of SIRT1 in on cisplatin-induced acetylation of p65 subunit of NF-κB and cell injury, HK2 cells were exposed with SIRT1 overexpression, LacZ adenovirus or dominant negative adenovirus after treatment with cisplatin. While protein expression of SIRT1 was decreased by cisplatin treatment compared with control buffer treatment, acetylation of NF-κB p65 subunit was significantly increased after treatment with cisplatin. Overexpression of SIRT1 ameliorated the increased acetylation of p65 of NF-κB during cisplatin treatment and cisplatin-induced cytotoxicity. Further, treatment of cisplatin-treated HK2 cells with resveratrol, a SIRT1 activator, also decreased acetylation of NF-κB p65 subunit and cisplatin-induced increase of the cell viability in HK2 cells. Our findings suggests that the regulation of acetylation of p65 of NF-κB through SIRT1 can be a possible target to attenuate cisplatin-induced renal cell damage.


Insights into the limitations of transient expression systems for the functional study of p53 acetylation site and oncogenic mutants.

  • Marius Bruer‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

Tumor suppressor protein p53 protects cells against malignant transformation mostly through transcriptional activation. Lysine acetylation is required to mediate activation of p53. The protein displays eight lysine residues and their evolutionary conservation argues for an essential role. The aim of this study was to investigate the significance of individual acetylation sites in mediating p53 functions. Differences in intracellular localization, protein expression levels, and transcriptional activity were investigated by overexpressing acetylation-deficient p53 variants in the colon carcinoma-derived p53 knock-out cell line HCT 116 p53(-/-). We found that not all lysine residues are equally capable of promoting p53's functions. Individual amino acid mutations or combinations thereof led to altered p53 expression levels, intracellular distribution, or transcriptional transactivation capacity, as compared to the wild-type protein. However, we observed that the choice of protein tag and expression vector could significantly alter obtained results on certain aspects of p53 function.


Alterations of estradiol-induced histone H3 acetylation in the preoptic area and anteroventral periventricular nucleus of middle-aged female rats.

  • Wen Xu‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

In this study we investigated the characteristics of histone H3 acetylation in the anterior hypothalamus under E2 positive feedback to gain a better understanding of the mechanism underlying reduced GnRH neuron activation and altered gene expression in female reproductive aging. Young and middle-aged female rats were ovariectomized (OVX) and treated with estradiol (E2) or oil. C-Fos expression, the number of GnRH neurons co-localized with c-Fos in the preoptic area (POA), and the number of acetylated histone H3 cells in the POA and anteroventral periventricular nucleus (AVPV) were quantified at the time of the expected GnRH neuron activation. We used real-time PCR to evaluate the expression of Esr1 target genes including Kiss1 and VGluT2 and genes known as Esr1 coregulators in the anterior hypothalamus. Our results show that in the young females, E2 markedly increased histone H3 acetylation in the POA and AVPV, coincident with increased c-Fos and GnRH neuron activation in the POA. In middle-aged females, E2-induced histone H3 acetylation was reduced in the POA but was not significantly altered in the AVPV. This occurred in association with a reduction of c-Fos expression and the number of GnRH cells expressing c-Fos in the POA as well as a down-regulation of Kiss1 and VGluT2 mRNA expression in the anterior hypothalamus of the animals. E2 caused significant decreases in Ncoa2 and Crebbp mRNA expression in the anterior hypothalamus of young, but not middle-aged females. Taken together, these data suggest that alterations of histone H3 acetylation in the POA and AVPV and the inability of Ncoa2 and Crebbp to respond to E2 in the middle-aged anterior hypothalamus partially contribute to the decline of GnRH neuron activation and E2 target gene expression changes that occur in female along with reproductive aging.


Smad4 mediated BMP2 signal is essential for the regulation of GATA4 and Nkx2.5 by affecting the histone H3 acetylation in H9c2 cells.

  • Lina Si‎ et al.
  • Biochemical and biophysical research communications‎
  • 2014‎

BMP2 signaling pathway plays critical roles during heart development, Smad4 encodes the only common Smad protein in mammals, which is a pivotal nuclear mediator. Our previous studies showed that BMP2 enhanced the expression of cardiac transcription factors in part by increasing histone H3 acetylation. In the present study, we tested the hypothesis that Smad4 mediated BMP2 signaling pathway is essential for the expression of cardiac core transcription factors by affecting the histone H3 acetylation. We successfully constructed a lentivirus-mediated short hairpin RNA interference vector targeting Smad4 (Lv-Smad4) in rat H9c2 embryonic cardiac myocytes (H9c2 cells) and demonstrated that it suppressed the expression of the Smad4 gene. Cultured H9c2 cells were transfected with recombinant adenoviruses expressing human BMP2 (AdBMP2) with or without Lv-Smad4. Quantitative real-time RT-PCR analysis showed that knocking down of Smad4 substantially inhibited both AdBMP2-induced and basal expression levels of cardiac transcription factors GATA4 and Nkx2.5, but not MEF2c and Tbx5. Similarly, chromatin immunoprecipitation (ChIP) analysis showed that knocking down of Smad4 inhibited both AdBMP2-induced and basal histone H3 acetylation levels in the promoter regions of GATA4 and Nkx2.5, but not of Tbx5 and MEF2c. In addition, Lv-Smad4 selectively suppressed AdBMP2-induced expression of HAT p300, but not of HAT GCN5 in H9c2 cells. The data indicated that inhibition of Smad4 diminished both AdBMP2 induced and basal histone acetylation levels in the promoter regions of GATA4 and Nkx2.5, suggesting that Smad4 mediated BMP2 signaling pathway was essential for the regulation of GATA4 and Nkx2.5 by affecting the histone H3 acetylation in H9c2 cells.


The low molecular weight fraction of commercial human serum albumin induces acetylation of α-tubulin and reduces transcytosis in retinal endothelial cells.

  • Gregory W Thomas‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

It has long been appreciated that the microtubule network plays a critical role in endothelial cell function. Chemical inhibition of tubulin polymerization has been shown to drastically increases endothelial permeability via interactions with the actin cytoskeleton. Conversely, stabilization of microtubules significantly decreases vascular permeability. The purpose of this investigation was to determine if the low molecular weight fraction of commercial 5% human serum albumin (LMWF5A) alters endothelial cell cytoskeletal dynamics and function. To investigate this, human retinal endothelial cells (HREC) were treated with LMWF5A and the acetylation of α-tubulin was determined by immunofluorescent staining and immunoblotting. In addition, permeability assays were performed to evaluate functional changes. We found that HREC treated with LMWF5A exhibit a rapid increase in the amount and distribution of acetylated α-tubulin. This was accompanied by a reduction in macromolecular permeability. Calcium depletion and inhibition of PI3-kinase reduced LMWF5A-induced acetylation while p38 MAPK inhibition potentiated this effect. These findings suggest that LMWF5A mediates changes in the microtubule network and reduces transcytosis in HREC.


Delphinidin, a specific inhibitor of histone acetyltransferase, suppresses inflammatory signaling via prevention of NF-κB acetylation in fibroblast-like synoviocyte MH7A cells.

  • Ah-Reum Seong‎ et al.
  • Biochemical and biophysical research communications‎
  • 2011‎

Histone acetyltransferase (HAT) inhibitors (HATi) isolated from dietary compounds have been shown to suppress inflammatory signaling, which contributes to rheumatoid arthritis. Here, we identified a novel HATi in Punica granatum L. known as delphinidin (DP). DP did not affect the activity of other epigenetic enzymes (histone deacetylase, histone methyltransferase, or sirtuin1). DP specifically inhibited the HAT activities of p300/CBP. It also inhibited p65 acetylation in MH7A cells, a human rheumatoid arthritis synovial cell line. DP-induced hypoacetylation was accompanied by cytosolic accumulation of p65 and nuclear localization of IKBα. Accordingly, DP treatment inhibited TNFα-stimulated increases in NF-κB function and expression of NF-κB target genes in these cells. Importantly, DP suppressed lipopolysaccharide-induced pro-inflammatory cytokine expression in Jurkat T lymphocytes, demonstrating that HATi efficiently suppresses cytokine-mediated immune responses. Together, these results show that the HATi activity of DP counters anti-inflammatory signaling by blocking p65 acetylation and that this compound may be useful in preventing inflammatory arthritis.


Mitochondrial localization of fission yeast manganese superoxide dismutase is required for its lysine acetylation and for cellular stress resistance and respiratory growth.

  • Hidekazu Takahashi‎ et al.
  • Biochemical and biophysical research communications‎
  • 2011‎

Manganese-dependent superoxide dismutase (MnSOD) is localized in the mitochondria and is important for oxidative stress resistance. Although transcriptional regulation of MnSOD has been relatively well studied, much less is known about the protein's posttranslational regulation. In budding yeast, MnSOD is activated after mitochondrial import by manganese ion incorporation. Here we characterize posttranslational modification of MnSOD in the fission yeast Schizosaccharomyces pombe. Fission yeast MnSOD is acetylated at the 25th lysine residue. This acetylation was diminished by deletion of N-terminal mitochondrial targeting sequence, suggesting that MnSOD is acetylated after import into mitochondria. Mitochondrial localization of MnSOD is not essential for the enzyme activity, but is crucial for oxidative stress resistance and growth under respiratory conditions of fission yeast. These results suggest that, unlike the situation in budding yeast, S. pombe MnSOD is already active even before mitochondrial localization; nonetheless, mitochondrial localization is critical to allow the cell to cope with reactive oxygen species generated inside or outside of mitochondria.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: