2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Some lymphoid cell lines transformed by Abelson murine leukemia virus lack a major 36,000-dalton tyrosine protein kinase substrate.

  • B M Sefton‎ et al.
  • Molecular and cellular biology‎
  • 1983‎

Fibroblasts transformed by Abelson murine leukemia virus differ from normal fibroblasts in that they contain several cellular proteins, including one of 29 and one of 36 kilodaltons, which are phosphorylated at tyrosine residues. Since it has been shown before that these proteins also become phosphorylated at tyrosine after transformation of fibroblasts by a number of other retroviruses, their phosphorylation may play an important role in the transformation of these cells. In contrast, the 36-kilodalton phosphoprotein was not detectable in three of the four lines of Abelson virus-transformed B lymphoma cell lines studied here. These three cell lines, RAW307.1.1, 18-48, and 18-81, and a B lymphoma induced by mineral oil, WEHI 279, were all found to lack both the phosphorylated and unphosphorylated forms of the 36-kilodalton protein. It thus appears that expression of this major cell protein is not essential for the survival of B lymphoma cells in culture and that the phosphorylation of the 36-kilodalton protein at tyrosine is not essential for transformation of pre-B lymphocytes by Abelson virus.


Evidence that the Abelson virus protein functions in vivo as a protein kinase that phosphorylates tyrosine.

  • B M Sefton‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 1981‎

Both lymphocytes and fibroblasts that have been transformed by ABelson murine leukemia virus contain 6- to 12-fold increased levels of the rare modified amino acid phosphotyrosine in their proteins. This observation, coupled with the fact that the p120 protein encoded by this virus has been shown to undergo an apparent autophosphorylation to yield phosphotyrosine in vitro, suggests that Abelson virus encodes a protein kinase that phosphorylates tyrosine in transformed cells. These results are similar to those obtained previously with Rous sarcoma virus and suggest, by analogy, that the modification of cellular polypeptides through the phosphorylation of tyrosine may be involved in cellular transformation by Abelson virus. p120 isolated from transformed cells contains phosphoserine, phosphothreonine, and phosphotyrosine. The phosphotyrosine is found at two sites in the protein. p120 therefore may be a protein kinase that undergoes autophosphorylation in vivo.


Recombinational junctions of variants of Moloney murine sarcoma virus: generation and divergence of a mammalian transforming gene.

  • D J Donoghue‎ et al.
  • Journal of virology‎
  • 1983‎

Different variants of Moloney murine sarcoma virus (MSV) were examined by nucleotide sequencing to compare the junctions between the acquired cellular sequence, v-mos, and the adjacent virus-derived sequences. These variants included 124-MSV, m1-MSV, and HT1-MSV and also the purportedly independent isolate Gazdar MSV. These four strains have an identical 5' junction between the murine leukemia virus env gene and the v-mos gene. This junction lies within the sixth codon of the chimeric env-mos coding region that encodes the transforming gene product. In contrast, at the 3' junction between the v-mos gene and the murine leukemia virus env gene, the three variants examined here were all different. A small deletion was found in the COOH-terminal portion of the m1-MSV env-mos coding region, indicating that the COOH terminus of this transforming gene product must be different from that of 124-MSV or HT1-MSV. The data presented here are consistent with the thesis that a virus closely related to HT1-MSV was the primordial Moloney MSV, and that all other related strains evolved from it by deletion or rearrangement. The variability observed in the Moloney MSV family is discussed in terms of possible mechanisms for the initial capture of mos sequences by the parental retrovirus and also in comparison with other transforming retrovirus families, such as Abelson murine leukemia virus and Rous sarcoma virus.


A 41-kilodalton protein is a potential substrate for the p210bcr-abl protein-tyrosine kinase in chronic myelogenous leukemia cells.

  • E Freed‎ et al.
  • Molecular and cellular biology‎
  • 1992‎

Chronic myelogenous leukemia (CML) is characterized by a translocation involving the c-abl protein-tyrosine kinase gene. A chimeric mRNA is formed containing sequences from a chromosome 22 gene (bcr) at its 5' end and all but the variable exon 1 of c-abl sequence. The product of this mRNA, p210bcr-abl, has constitutively high protein-tyrosine kinase activity. We examined K562 cells and other lines established from CML patients for the presence of phosphotyrosine (P-Tyr)-containing proteins which might be p210bcr-abl substrates. Two-dimensional gel separation of 32P-labeled proteins followed by phosphoamino acid analysis of 25 phosphoproteins, which comprised the major alkali-stable phosphoproteins, indicated that three related proteins of 41 kDa are the most prominent P-Tyr-containing proteins detected by this method. The 41-kDa phosphoproteins are found in two other CML lines that we examined but not in lines of similar lineage isolated from patients with distinct leukemic disease. A protein that comigrates with the major form of pp41 (pp41A) and contains P-Tyr is also found in murine fibroblasts and B-lymphoid cells transformed by Abelson murine leukemia virus, which encodes the v-abl protein, and in platelet-derived growth factor-treated fibroblasts, in which it has been described previously. We analyzed three pairs of Epstein-Barr virus-immortalized B-cell lines from individual CML patients and found that only the lines in which active p210bcr-abl was present contained detectable pp41. We also performed immunoblotting with anti-P-Tyr antibodies on the same CML cell lines and detected at least four other putative substrates of p210bcr-abl, which were undetected with use of the two-dimensional gel technique.


Four different classes of retroviruses induce phosphorylation of tyrosines present in similar cellular proteins.

  • J A Cooper‎ et al.
  • Molecular and cellular biology‎
  • 1981‎

Chicken embryo cells transformed by the related avian sarcoma viruses PRC II and Fujinami sarcoma virus, or by the unrelated virus Y73, contain three phosphoproteins not observed in untransformed cells and increased levels of up to four other phosphoproteins. These same phosphoproteins are present in increased levels in cells transformed by Rous sarcoma virus, a virus which is apparently unrelated to the three aforementioned viruses. In all cases, the phosphoproteins contain phosphotyrosine and thus may be substrates for the tyrosine-specific protein kinases encoded by these viruses. In one case, the site(s) of tyrosine phosphorylation within the protein is the same for all four viruses. A homologous protein is also phosphorylated, at the same major site, in mouse 3T3 cells transformed by Rous sarcoma virus or by the further unrelated virus Abelson murine leukemia virus. A second phosphotyrosine-containing protein has been detected in both Rous sarcoma virus and Abelson murine leukemia virus-transformed 3T3 cells, but was absent from normal 3T3 cells and 3T3 cells transformed by various other viruses. We conclude that representatives of four apparently unrelated classes of transforming retroviruses all induce the phosphorylation of tyrosines present in the same set of cellular proteins.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: