Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Curcumin affects ox-LDL-induced IL-6, TNF-α, MCP-1 secretion and cholesterol efflux in THP-1 cells by suppressing the TLR4/NF-κB/miR33a signaling pathway.

  • Yi Zhong‎ et al.
  • Experimental and therapeutic medicine‎
  • 2020‎

The aim of the present study was to study the molecular mechanism of how curcumin decreases the formation of ox-LDL induced human monocyte macrophage foam cells, promotes the efflux of cholesterol and reduces the secretion of inflammatory cytokines. In vitro cultured THP-1 cells were induced to become macrophages using phorbol-12-myristate-13-acetate. The cells were then pre-treated with curcumin before inducing the foam cell model by addition of oxidized low-density lipoprotein (ox-LDL). Western blot assays were used to detect expression levels of toll-like receptor (TLR)4, nuclear factor κB (NF-κB), NF-κB inhibitor α (IκBα), phosphorylated-IκBα and ATP binding cassette transporter (ABC)A1. Reverse transcription-quantitative PCR was employed to examine mRNA levels of TLR4, microRNA (miR)33a and ABCA1. ELISAs were used to detect inflammatory factors, including tumor necrosis factor (TNF)-α, monocyte chemotactic protein (MCP)-1 and interleukin (IL)-6. ox-LDL successfully induced the foam cell model, promoted phosphorylation of IκBα, promoted nuclear translocation of NF-κB, promoted the expression of TLR4 and miR33a, and promoted the secretion of TNF-α, MCP-1 and Il-6. Additionally, ox-LDL reduced the expression of ABCA1 and cholesterol efflux. However, pretreatment with curcumin increased the expression of ABCA1 and cholesterol efflux and suppressed secretion of TNF-α, MCP-1 and Il-6. TLR4 antibodies, the NF-κB blocker, PDTC, and the miR33a inhibitor also reduced the abnormal transformations induced by ox-LDL. Curcumin promoted cholesterol efflux by suppressing the TLR4/NF-κB/miR33a signaling pathway, and reduced the formation of foam cells and the secretion of inflammatory factors.


Metformin suppresses foam cell formation, inflammation and ferroptosis via the AMPK/ERK signaling pathway in ox‑LDL‑induced THP‑1 monocytes.

  • Yihan Zhao‎ et al.
  • Experimental and therapeutic medicine‎
  • 2022‎

Numerous studies have shown that the formation of foam cells is of vital importance in the process of atherosclerosis. The aim of the present study was to assess the effects of metformin on foam cell formation in oxidized low-density lipoprotein (ox-LDL)-treated THP-1 cells and explore its associated mechanism of action. Human monocytic THP-1 cells were pretreated with metformin for 2 h and subsequently treated with ox-LDL for 24 h. The data indicated that metformin significantly inhibited lipid accumulation in ox-LDL-treated THP-1 cells by decreasing the expression of scavenger receptor A, cluster of differentiation 36 and adipocyte enhancer-binding protein 1. In addition, metformin increased the expression levels of scavenger receptor B1 and ATP binding cassette transporter G1 and suppresses the esterification of free cholesterol. Furthermore, it markedly inhibited ferroptosis (reflected by the upregulation of glutathione peroxidase glutathione peroxidase 4 and the downregulation of Heme oxygenase-1). In addition, it caused a marked suppression in the expression levels of cysteinyl aspartate specific proteinase-1, IL-1β, NOD-like receptor protein 3, IL-18 secretion and in the levels of oxidative stress. Metformin attenuated the activation of ERK and facilitated the phosphorylation of 5' adenosine monophosphate-activated protein kinase (AMPK). Treatment of THP-1 cells with an ERK inhibitor reversed these effects, while inhibition of AMPK activity exacerbated the effects noted in ox-LDL-treated THP-1 cells. In conclusion, the present study suggested that metformin suppressed foam cell formation, inflammatory responses and inhibited ferroptosis in ox-LDL-treated macrophages via the AMPK/ERK signaling pathway.


Effects of mulberry leaf on experimental hyperlipidemia rats induced by high-fat diet.

  • Jianbo Huang‎ et al.
  • Experimental and therapeutic medicine‎
  • 2018‎

Hypercholesterolemia is a major risk factor for cardiovascular disease. Mulberry leaf (ML) is a Traditional Chinese Medicine used to treat hyperlipidemia in clinical settings. The aim of the present study was to identify the potential effect and possible target of ML in anti-hypercholesterolemia. Male Sprague-Dawley rats were fed with a high-fat diet and treated with ML for 5 weeks. Blood lipid levels, total cholesterol (TC) and total bile acid (TBA) in the liver and feces were measured to assess the effects of ML on hypercholesterolemia. Harris's hematoxylin staining and oil red O staining was applied to observe the pathological change and lipid accumulation in the liver. Immunohistochemical assay was performed to observe the location of expressions of scavenger receptor class B type I and low-density lipoprotein (LDL) receptor (-R), and western blotting was applied to determine the protein expression of ATP-binding cassette transporter G5/G8 (ABCG5/8), nuclear transcription factor peroxisome proliferator-activated receptor-α (PPARα), farnesoid-X receptor (FXR) and cholesterol 7α-hydroxylase 1 (CYP7A1). The results demonstrated that ML treatment reduced serum TC and LDL-cholesterol levels, and liver TC and TBA contents; increased serum HDL-C levels, and fecal TC and TBA contents; and alleviated hepatocyte lipid degeneration. In addition, ML treatment inhibited liver LDL-R, PPARα and FXR protein expression, promoted protein expression of CYP7A1, and maintained the ratio of ABCG5/ABCG8. The findings of the present study provide a positive role of ML on cholesterol clearance via promoting cholesterol and TBA execration via FXR- and CYP7A1-mediated pathways; RCT regulation may be a potential mechanism of ML on anti-hypercholesterolemia.


Role and mechanism of the zinc finger protein ZNF580 in foam-cell formation.

  • Zhongbai Zhang‎ et al.
  • Experimental and therapeutic medicine‎
  • 2022‎

Coronary atherosclerotic heart disease poses a significant threat to human health. The pathological basis is atherosclerosis and foam-cell formation is the key factor in the initiation of atherosclerosis. In the present study, foam cell models were established using 50 ng/ml oxidized low-density lipoprotein to stimulate in vitro cultures of THP-1 cells for 72 h. The expression of zinc finger protein 580 (ZNF580), a Cys2-His2 zinc finger protein containing 172 amino acids that was originally cloned by screening a human aortic cDNA library, was measured in foam cells and its interaction with various regulatory factors during foam-cell formation was investigated. Oil red O staining was used to observe cell morphology and intracellular lipid levels. Lentivirus transfection was employed to either overexpress or silence ZNF580 in THP-1 cells, and an inverted fluorescence microscope was used to observe the distribution of ZNF580 immunofluorescence to determine the transfection rate. RNA and total protein were extracted and the expression levels of ZNF580, CD36, peroxisome proliferator-activated receptor-γ (PPAR-γ), ATP-binding cassette transporter A1 (ABCA1) and apolipoprotein E (ApoE) were measured by reverse transcription-quantitative PCR. The protein levels were examined by western blot analysis to evaluate the interaction between ZNF580 and associated regulatory factors. ZNF580 was able to significantly increase the expression levels of ApoE and ABCA1 and significantly decrease the expression levels of CD36 and PPAR-γ, suggesting that ZNF580-mediated inhibition of foam-cell formation is associated with the PPAR-γ-CD36 signalling pathway. Based on these findings, ZNF580 may be a potential therapeutic candidate for the treatment of coronary atherosclerotic heart disease.


Pharmacological inhibition of EZH2 by GSK126 decreases atherosclerosis by modulating foam cell formation and monocyte adhesion in apolipoprotein E-deficient mice.

  • Xianjing Wei‎ et al.
  • Experimental and therapeutic medicine‎
  • 2021‎

Histone modifications play an important role in the occurrence and development of atherosclerosis in human and atherosclerosis-prone mice. Histone methylation in macrophages, monocytes and endothelial cells markedly influence the progression of atherosclerosis. However, it remains unclear whether treatment with a histone methyltransferase enhancer of zeste homolog 2 (EZH2) inhibitor may suppress atherosclerosis. The present study aimed to determine the effects of the EZH2 inhibitor, GSK126, on the suppression and regression of atherosclerosis in apolipoprotein E-deficient mouse models. In vitro, it was found that pharmacological inhibition of EZH2 by GSK126 markedly reduced lipid transportation and monocyte adhesion during atherogenesis, predominantly through increasing the expression levels of ATP-binding cassette transporter A1 and suppressing vascular cell adhesion molecule 1 in human THP-1 cells. In vivo, it was found that atherosclerotic plaques in GSK126-treated mice were significantly decreased when comparing with the vehicle-treated animals. These results indicated that the GSK126 has the ability to attenuate the progression of atherosclerosis by reducing macrophage foam cell formation and monocyte adhesion in cell and mouse models. In conclusion, the present study provided new insights into the molecular mechanism behind the action of GSK126 and suggested its therapeutic potential for the treatment of atherosclerosis.


Toll-like receptor 2 downregulates the cholesterol efflux by activating the nuclear factor-κB pathway in macrophages and may be a potential therapeutic target for the prevention of atherosclerosis.

  • Yongqiang Li‎ et al.
  • Experimental and therapeutic medicine‎
  • 2018‎

Atherosclerosis is a chronic inflammatory disease, which is triggered by lipid retention. Toll-like receptor 2 (TLR2) is a novel target for therapeutic intervention in atherosclerosis. In addition, nuclear factor-κB (NF-κB) serves important roles in stress response and inflammation. The present study investigated whether TLR2 is involved in the activation of cholesterol efflux in macrophages by regulating the NF-κB pathway. The human monocytic THP-1 cell line and murine macrophage RAW264.7 cell line were treated with 50 µg/ml oxidized low-density lipoprotein (ox-LDL) for 48 h in order to obtain macrophage foam cells. The cholesterol efflux of the cell lines under exogenous TLR2 treatment was assessed by liquid scintillation counting. Furthermore, the protein and mRNA expression levels of ATP binding cassette transporter A1 (ABCA1), ABCG1 and scavenger receptor B1 (SR-B1) were examined by western blot and quantitative polymerase chain reaction assays, respectively. To detect the effect of NF-κB on cholesterol efflux, the cells were divided into three groups, including the control, 10 ng/ml lipopolysaccharides (LPS; 24 h) and 10 ng/ml LPS + 50 µM pyrrolidinedithiocarbamate (PDTC; 24 h) groups. The results indicated that ox-LDL induced foam cell formation in the THP-1 and RAW264.7 cells, while TLR2 significantly decreased the cholesterol efflux in dose- and time-dependent manners. Accordingly, TLR2 reduced ABCA1, ABCG1 and SR-B1 expression at the transcriptional and translational levels in a dose-dependent manner. In addition, application of PDTC (an NF-κB specific inhibitor) markedly suppressed the LPS-induced downregulation of cholesterol efflux. These data revealed that TLR2 may be involved in the activation of cholesterol efflux in macrophages by regulating the NF-κB signaling pathway.


Inhibition of miR-200b-3p alleviates lipid accumulation and promotes cholesterol efflux by targeting ABCA1 in macrophage-derived foam cells.

  • Yu-Ting Wu‎ et al.
  • Experimental and therapeutic medicine‎
  • 2021‎

Atherosclerosis (As) is a chronic cardiovascular disease characterized by abnormal of lipid accumulation and cholesterol efflux. The present study aimed to investigate whether the micro-RNA (miR)-200b-3p could exacerbate As by promoting lipid accumulation and inhibiting cholesterol efflux via ATP-binding cassette transporter A1 (ABCA1) in macrophage-derived foam cells. Blood samples from 30 patients with As and 30 healthy people were collected at Quanzhou First Hospital. RAW264.7 cells were used to establish foam cells using oxidized low-density lipoprotein. The expression of miR-200b-3p and ABCA1 was evaluated by reverse transcription quantitative PCR and western blotting. Lipid accumulation was analyzed by Oil Red O staining and cholesterol content was assessed by ELISA. A targeting relationship between miR-200b-3p and ABCA1 was demonstrated by luciferase reporter assays. Compared with healthy volunteers and RAW264.7 cells, the expression level of miR-200b-3p was significantly increased whereas the expression level of ABCA1 was significantly decreased in patients with As and foam cells. Furthermore, miR-200b-3p expression was negatively correlated with ABCA1 expression in the blood of the patients with As. Lipid content was significantly decreased and cholesterol efflux was significantly increased in foam cells transfected with the miR-200b-3p inhibitor compared with inhibitor control cells. In addition, ABCA1 was shown to be targeted by miR-200b-3p. Furthermore, the lipid content in foam cells transfected with the miR-200b-3p inhibitor and small interfering-ABCA1 was significantly increased, while the cholesterol efflux was significantly decreased compared with foam cells transfected with the miR-200b-3p inhibitor. In conclusion, the findings from the present study indicated that inhibition of miR-200b-3p may alleviate lipid accumulation and promote cholesterol efflux by targeting ABCA1 in macrophage-derived foam cells.


Inhibitory effects and mechanism of 5-fluorouracil combined with celecoxib on human gastric cancer xenografts in nude mice.

  • Xiao-Qian Zhang‎ et al.
  • Experimental and therapeutic medicine‎
  • 2015‎

5-Fluorouracil (5-Fu) is one of the most commonly used drugs to treat gastric cancer; however, drug-resistance in cancer cells reduces the efficacy of 5-Fu. Celecoxib may be able to reduce resistance to 5-Fu chemotherapy. The aim of the present study was to investigate the inhibitory effects of a combination of 5-Fu and celecoxib on implanted gastric cancer xenografts in nude mice and to elucidate the underlying mechanism. A tumor-bearing nude mice model was established. The mice were divided into blank control, 5-Fu, celecoxib and combination groups. The weight change and the tumor inhibition rate in each group were calculated. Immunocytochemistry, reverse transcription-polymerase chain reaction and western blotting methods were used to observe hypoxia-inducible factor-2α (HIF-2α), ATP-binding cassette transporter G2 (ABCG2) and octamer-binding transcription factor 4 (Oct-4) expression in the SGC7901 cells. Inhibition of the growth of the implanted gastric cancer was observed in the 5-Fu, celecoxib and combination groups. In the celecoxib and combination treatment groups, the mean tumor mass was significantly less than that in the control group (P<0.05), and the mean tumor mass in the combination treatment group was significantly less than that in the 5-Fu group (P<0.05). The tumor inhibition rates in the 5-Fu, celecoxib and combination groups were 26.36, 59.70 and 88.37%, respectively. The combination group exhibited the highest inhibition rate; the inhibition rates of the combination and celecoxib groups were significantly higher compared with the 5-Fu group (P<0.05). The expression levels of HIF-2, ABCG2 and Oct-4 mRNA and protein were high in the blank control group, and were further increased in the 5-Fu group. However, in the celecoxib and combination groups, the expression levels were lower compared with those in the control group. Significant differences were identified among the 5-Fu, celecoxib and combination groups (P<0.01). Celecoxib has antitumor effects in vivo. The mechanism may be associated with the reduced expression of cancer stem cell markers HIF-2α, Oct-4 and ABCG2. 5-Fu and celecoxib have a synergistic antitumor effect. The mechanism associated with the amelioration of resistance to chemotherapy in gastric cancer and the enhancement of the effect of chemotherapy may be via the reduction of the expression of HIF-2α, ABCG2, Oct-4 and other cancer stem cell markers in the tumor tissues.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: