Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 52 papers

Persistent Simian Immunodeficiency Virus Infection Causes Ultimate Depletion of Follicular Th Cells in AIDS.

  • Huanbin Xu‎ et al.
  • Journal of immunology (Baltimore, Md. : 1950)‎
  • 2015‎

CD4(+) T follicular helper (Tfh) cells are critical for the generation of humoral immune responses to pathogenic infections, providing help for B cell development, survival, and affinity maturation of Abs. Although CD4(+) Tfh cells are reported to accumulate in HIV or SIV infection, we found that germinal center Tfh cells, defined in this study as CXCR5(+)PD-1(HIGH)CD4(+) T cells, did not consistently accumulate in chronically SIV-infected rhesus macaques compared with those infected with less pathogenic simian HIV, vaccinated and SIVmac-challenged, or SIVmac-infected Mamu-A*01(+) macaques, all of which are associated with some control of virus replication and slower disease progression. Interestingly, CXCR5(+)PD-1(HIGH) Tfh cells in lymphoid tissues were eventually depleted in macaques with AIDS compared with the other cohorts. Chronic activation and proliferation of CXCR5(+)PD-1(HIGH) Tfh were increased, but PD-L2 expression was downregulated on B cells, possibly resulting in germinal center Tfh cell apoptosis. Together, these findings suggest that changes in CXCR5(+)PD-1(HIGH) Tfh cells in lymph nodes correlate with immune control during infection, and their loss or dysregulation contribute to impairment of B cell responses and progression to AIDS.


Kinetics of liver macrophages (Kupffer cells) in SIV-infected macaques.

  • Muhammad H Ahsan‎ et al.
  • Virology‎
  • 2013‎

Since the liver drains antigens from the intestinal tract, and since the intestinal tract is a major site of viral replication, we examined the dynamics of liver macrophages (Kupffer cells) throughout SIV infection. Absolute numbers of Kupffer cells increased in the livers in acute infection, and in animals with AIDS. Significantly higher percentages of proliferating (BrdU+) Kupffer cells were detected in acute infection and in AIDS with similar trends in blood monocytes. Significantly higher percentages of apoptotic (AC3+) Kupffer cells were also found in acute and AIDS stages. However, productively infected cells were not detected in liver of 41/42 animals examined, despite abundant infected cells in gut and lymph nodes of all animals. Increased rates of Kupffer cell proliferation resulting in an increase in Kupffer cells without productive infection indicate SIV infection affects Kupffer cells, but the liver does not appear to be a major site of productive viral replication.


Localization of productively infected cells in the spleen and Peyer's patches of rhesus macaques during acute infection with SIVmac239Δnef-enhanced green fluorescent protein.

  • Gui-Bo Yang‎ et al.
  • AIDS research and human retroviruses‎
  • 2014‎

No abstract available


Elite Control, Gut CD4 T Cell Sparing, and Enhanced Mucosal T Cell Responses in Macaca nemestrina Infected by a Simian Immunodeficiency Virus Lacking a gp41 Trafficking Motif.

  • Matthew W Breed‎ et al.
  • Journal of virology‎
  • 2015‎

Deletion of Gly-720 and Tyr-721 from a highly conserved GYxxØ trafficking signal in the SIVmac239 envelope glycoprotein cytoplasmic domain, producing a virus termed ΔGY, leads to a striking perturbation in pathogenesis in rhesus macaques (Macaca mulatta). Infected macaques develop immune activation and progress to AIDS, but with only limited and transient infection of intestinal CD4(+) T cells and an absence of microbial translocation. Here we evaluated ΔGY in pig-tailed macaques (Macaca nemestrina), a species in which SIVmac239 infection typically leads to increased immune activation and more rapid progression to AIDS than in rhesus macaques. In pig-tailed macaques, ΔGY also replicated acutely to high peak plasma RNA levels identical to those for SIVmac239 and caused only transient infection of CD4(+) T cells in the gut lamina propria and no microbial translocation. However, in marked contrast to rhesus macaques, 19 of 21 pig-tailed macaques controlled ΔGY replication with plasma viral loads of <15 to 50 RNA copies/ml. CD4(+) T cells were preserved in blood and gut for up to 100 weeks with no immune activation or disease progression. Robust antiviral CD4(+) T cell responses were seen, particularly in the gut. Anti-CD8 antibody depletion demonstrated CD8(+) cellular control of viral replication. Two pig-tailed macaques progressed to disease with persisting viremia and possible compensatory mutations in the cytoplasmic tail. These studies demonstrate a marked perturbation in pathogenesis caused by ΔGY's ablation of the GYxxØ trafficking motif and reveal, paradoxically, that viral control is enhanced in a macaque species typically predisposed to more pathogenic manifestations of simian immunodeficiency virus (SIV) infection.


Early restoration of mucosal CD4 memory CCR5 T cells in the gut of SIV-infected rhesus predicts long term non-progression.

  • Binhua Ling‎ et al.
  • AIDS (London, England)‎
  • 2007‎

: To use SIVmac-infected Chinese-origin rhesus macaques (Ch Rh) to characterize the immunopathology of the long term non-progressor (LTNP) state. The key questions addressed were whether or not LTNP experience an early and rapid loss of mucosal CD4 T cells during the acute infection and the mechanisms by which they maintain the LTNP state.


Loss of a tyrosine-dependent trafficking motif in the simian immunodeficiency virus envelope cytoplasmic tail spares mucosal CD4 cells but does not prevent disease progression.

  • Matthew W Breed‎ et al.
  • Journal of virology‎
  • 2013‎

A hallmark of pathogenic simian immunodeficiency virus (SIV) and human immunodeficiency virus (HIV) infections is the rapid and near-complete depletion of mucosal CD4(+) T lymphocytes from the gastrointestinal tract. Loss of these cells and disruption of epithelial barrier function are associated with microbial translocation, which has been proposed to drive chronic systemic immune activation and disease progression. Here, we evaluate in rhesus macaques a novel attenuated variant of pathogenic SIVmac239, termed ΔGY, which contains a deletion of a Tyr and a proximal Gly from a highly conserved YxxØ trafficking motif in the envelope cytoplasmic tail. Compared to SIVmac239, ΔGY established a comparable acute peak of viremia but only transiently infected lamina propria and caused little or no acute depletion of mucosal CD4(+) T cells and no detectable microbial translocation. Nonetheless, these animals developed T-cell activation and declining peripheral blood CD4(+) T cells and ultimately progressed with clinical or pathological features of AIDS. ΔGY-infected animals also showed no infection of macrophages or central nervous system tissues even in late-stage disease. Although the ΔGY mutation persisted, novel mutations evolved, including the formation of new YxxØ motifs in two of four animals. These findings indicate that disruption of this trafficking motif by the ΔGY mutation leads to a striking alteration in anatomic distribution of virus with sparing of lamina propria and a lack of microbial translocation. Because these animals exhibited wild-type levels of acute viremia and immune activation, our findings indicate that these pathological events are dissociable and that immune activation unrelated to gut damage can be sufficient for the development of AIDS.


Preferential Destruction of Interstitial Macrophages over Alveolar Macrophages as a Cause of Pulmonary Disease in Simian Immunodeficiency Virus-Infected Rhesus Macaques.

  • Yanhui Cai‎ et al.
  • Journal of immunology (Baltimore, Md. : 1950)‎
  • 2015‎

To our knowledge, this study demonstrates for the first time that the AIDS virus differentially impacts two distinct subsets of lung macrophages. The predominant macrophages harvested by bronchoalveolar lavage (BAL), alveolar macrophages (AMs), are routinely used in studies on human lung macrophages, are long-lived cells, and exhibit low turnover. Interstitial macrophages (IMs) inhabit the lung tissue, are not recovered with BAL, are shorter-lived, and exhibit higher baseline turnover rates distinct from AMs. We examined the effects of SIV infection on AMs in BAL fluid and IMs in lung tissue of rhesus macaques. SIV infection produced massive cell death of IMs that contributed to lung tissue damage. Conversely, SIV infection induced minimal cell death of AMs, and these cells maintained the lower turnover rate throughout the duration of infection. This indicates that SIV produces lung tissue damage through destruction of IMs, whereas the longer-lived AMs may serve as a virus reservoir to facilitate HIV persistence.


Nonpathologic Infection of Macaques by an Attenuated Mycobacterial Vaccine Is Not Reactivated in the Setting of HIV Co-Infection.

  • Taylor W Foreman‎ et al.
  • The American journal of pathology‎
  • 2017‎

Failure to replace Bacille Calmette-Guerin vaccines with efficacious anti-tuberculosis (TB) vaccines have prompted outside-the-box thinking, including pulmonary vaccination to elicit local immunity. Inhalational MtbΔsigH, a stress-response-attenuated strain, protected against lethal TB in macaques. While live mycobacterial vaccines show promising efficacy, HIV co-infection and the resulting immunodeficiency prompts safety concerns about their use. We assessed the persistence and safety of MtbΔsigH, delivered directly to the lungs, in the setting of HIV co-infection. Macaques were aerosol-vaccinated with ΔsigH and subsequently challenged with SIVmac239. Bronchoalveolar lavage and tissues were sampled for mycobacterial persistence, pathology, and immune correlates. Only 35% and 3.5% of lung samples were positive for live bacilli and granulomas, respectively. Our results therefore suggest that the nonpathologic infection of macaque lungs by ΔsigH was not reactivated by simian immunodeficiency virus, despite high viral levels and massive ablation of pulmonary CD4+ T cells. Protective pulmonary responses were retained, including vaccine-induced bronchus-associated lymphoid tissue and CD8+ effector memory T cells. Despite acute simian immunodeficiency virus infection, all animals remained asymptomatic of pulmonary TB. These findings highlight the efficacy of mucosal vaccination via this attenuated strain and will guide its further development to potentially combat TB in HIV-endemic areas. Our results also suggest that a lack of pulmonary pathology is a key correlate of the safety of live mycobacterial vaccines.


CD4+ T-cell-independent mechanisms suppress reactivation of latent tuberculosis in a macaque model of HIV coinfection.

  • Taylor W Foreman‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2016‎

The synergy between Mycobacterium tuberculosis (Mtb) and HIV in coinfected patients has profoundly impacted global mortality because of tuberculosis (TB) and AIDS. HIV significantly increases rates of reactivation of latent TB infection (LTBI) to active disease, with the decline in CD4(+) T cells believed to be the major causality. In this study, nonhuman primates were coinfected with Mtb and simian immunodeficiency virus (SIV), recapitulating human coinfection. A majority of animals exhibited rapid reactivation of Mtb replication, progressing to disseminated TB and increased SIV-associated pathology. Although a severe loss of pulmonary CD4(+) T cells was observed in all coinfected macaques, a subpopulation of the animals was still able to prevent reactivation and maintain LTBI. Investigation of pulmonary immune responses and pathology in this cohort demonstrated that increased CD8(+) memory T-cell proliferation, higher granzyme B production, and expanded B-cell follicles correlated with protection from reactivation. Our findings reveal mechanisms that control SIV- and TB-associated pathology. These CD4-independent protective immune responses warrant further studies in HIV coinfected humans able to control their TB infection. Moreover, these findings will provide insight into natural immunity to Mtb and will guide development of novel vaccine strategies and immunotherapies.


Persistent Simian Immunodeficiency Virus Infection Drives Differentiation, Aberrant Accumulation, and Latent Infection of Germinal Center Follicular T Helper Cells.

  • Huanbin Xu‎ et al.
  • Journal of virology‎
  • 2016‎

CD4(+) follicular T helper (Tfh) cells play a prominent role in humoral immune responses, but the mechanisms of their accumulation and infection in AIDS remain unclear. Here we found that germinal center (GC) Tfh cells, defined here as CXCR5(+) PD-1(HIGH) CD4(+) T cells, do not express the HIV coreceptor CCR5 yet serve as a latent reservoir in GCs. With disease progression, an expansion of GC Tfh cells is accompanied by increases in dysfunctional CD8(+) T cells. In contrast, Tfh precursor (CXCR5(-) CD4(+) T) cells in lymph nodes do express CCR5 and differentiate into GC Tfh cells following interleukin-6 (IL-6) and IL-21 stimulation, and viral DNA is detectable in fully differentiated GC Tfh cells ex vivo. This suggests that SIV-infected GC Tfh cells may be derived from Tfh precursor cell subsets that become infected in marginal zones and then migrate into GCs as fully mature GC Tfh cells that serve as persistent virus reservoirs. These findings suggest that viral persistence in lymph nodes drives compensatory differentiation, aberrant accumulation, and latent infection of GC Tfh cells, resulting in marked impairment of humoral immune responses.


Detecting the simian immunodeficiency virus reservoir as viral DNA and RNA in situ simultaneously as a model to monitor viral latency.

  • Xavier Alvarez‎ et al.
  • AIDS research and human retroviruses‎
  • 2014‎

No abstract available


Increased monocyte turnover is associated with interstitial macrophage accumulation and pulmonary tissue damage in SIV-infected rhesus macaques.

  • Yanhui Cai‎ et al.
  • Journal of leukocyte biology‎
  • 2015‎

We recently reported that increasing blood monocyte turnover that was associated with tissue macrophage death better predicts terminal disease progression in adult SIV-infected macaques than does declining CD4(+) T cell levels. To understand better mechanisms of pathogenesis, this study relates severity of lung-tissue damage to the ratio, distribution, and inflammatory responses of lung macrophage subsets during SIV infection in rhesus macaques exhibiting varying rates of monocyte turnover. In vivo BrdU incorporation was used to evaluate kinetics of monocyte/tissue macrophage turnover. Tissue damage was scored microscopically from H&E-stained lung-tissue sections, and cytokine expression was examined via immunohistochemistry and confocal microscopy. Increased monocyte turnover in SIV-infected rhesus macaques significantly correlated with severity of lung-tissue damage, as exhibited by perivasculitis, vasculitis, interstitial pneumonia, alveolar histiocytosis, foamy macrophages, multinucleated giant cells, fibrin, and edema in the alveoli. In addition, the higher monocyte turnover correlated with declining AI ratio, increased accumulation of IM in the perivascular region of the lung, and higher expression of IL-6 in the IM of the lung tissue exposed to a LPS, calcium ionophore, and tumor promoter combination stimulation ex vivo. Accumulation of IM associated with increasing monocyte turnover during SIV infection appears to contribute to chronic pulmonary inflammation and tissue damage during disease progression to AIDS.


Single epitope mucosal vaccine delivered via immuno-stimulating complexes induces low level of immunity against simian-HIV.

  • Bapi Pahar‎ et al.
  • Vaccine‎
  • 2006‎

The difficulty in developing an effective vaccine to contain the HIV/AIDS epidemic coupled with the fact that primary HIV-1 infection typically occurs via mucosal sites has increased emphasis on vaccine approaches that protect at mucosal surfaces. In this study we employed HIV and simian-HIV (SHIV)-derived T helper (Th) and cytotoxic T lymphocyte (CTL) single epitopes incorporated into immuno-stimulating complexes (ISCOM) as a candidate immunogens. Immunized rhesus macaques (Macaca mulatta) were challenged with CCR5-tropic SHIV(SF162p4). On the day of challenge, low levels of virus-neutralizing antibodies (Ab) and CTLs were detected in ISCOM-immunized macaques. Greater than 10(5) viral RNA copies per ml of plasma in 2/5 immunized and 3/4 control macaques were detected within 3 weeks post-challenge. Depletion of CD4+ T cells from gut-associated lymphoid tissues (GALT) was observed by post-challenge day (PCD) 14 in all macaques regardless immunization. Nonetheless, lower viral loads and relatively better preservation of peripheral CD4+ T cells following the SHIV infection was observed in ISCOM-immunized macaques. We predict that if coadministered with additional epitopes and/or more efficacious mucosal delivery system or route, HIV/SIV-derived peptide vaccines may have potential to elicit heterologous protection.


Granuloma correlates of protection against tuberculosis and mechanisms of immune modulation by Mycobacterium tuberculosis.

  • Smriti Mehra‎ et al.
  • The Journal of infectious diseases‎
  • 2013‎

The BCG vaccine is ineffective against adult tuberculosis. Hence, new antituberculosis vaccines are needed. Correlates of protection against tuberculosis are not known. We studied the effects of BCG vaccination on gene expression in tuberculosis granulomas using macaques.


Dysregulated miR-34a-SIRT1-acetyl p65 axis is a potential mediator of immune activation in the colon during chronic simian immunodeficiency virus infection of rhesus macaques.

  • Mahesh Mohan‎ et al.
  • Journal of immunology (Baltimore, Md. : 1950)‎
  • 2015‎

Persistent gastrointestinal inflammation, a hallmark of progressive HIV/SIV infection, causes disruption of the gastrointestinal epithelial barrier, microbial translocation, and generalized immune activation/inflammation driving AIDS progression. Apart from protein regulators, recent studies strongly suggest critical roles for microRNAs (miRNAs) in regulating and managing certain aspects of the inflammatory process. To examine their immunoregulatory role, we profiled miRNA expression in the colon from 12 chronic SIV-infected and 4 control macaques. After applying multiple comparisons correction, 10 (3 upregulated and 7 downregulated) miRNAs showed differential expression. Most notably, miR-34a showed significant upregulation in both epithelial and lamina propria leukocyte (LPL) compartments. Intense γH2A.X expression in colonic epithelium and LPLs confirmed the contribution of DNA damage response in driving miR-34a upregulation. SIRT1 mRNA and protein decreased significantly in both colonic epithelium and LPLs. Luciferase reporter assays validated rhesus macaque SIRT1 as a direct miR-34a target. Decreased SIRT1 expression was associated with constitutively enhanced expression of the transcriptionally active form of the p65 (acetylated on lysine 310) subunit of NF-κB exclusively in the LPL compartment. The intensity and number of acetylated p65(+) cells was markedly elevated in LPLs of chronically SIV-infected macaques compared with uninfected controls and localized to increased numbers of IgA(+) and IgG(+) plasma cells. These findings provide new insights into the potential role of the miR-34a-SIRT1-p65 axis in causing hyperactivation of the intestinal B cell system. Our results point to a possible mechanism where the normal immunosuppressive function of SIRT1 is inhibited by elevated miR-34a expression resulting in constitutive activation of acetylated p65 (lysine 310).


Translational Research in the Nonhuman Primate Model of Tuberculosis.

  • Taylor W Foreman‎ et al.
  • ILAR journal‎
  • 2017‎

Infection with Mycobacterium tuberculosis predominantly establishes subclinical latent infection over the lifetime of an individual, with a fraction of infected individuals rapidly progressing to active disease. The immune control in latent infection can be perturbed by comorbidities such as diabetes mellitus, obesity, smoking, and coinfection with helminthes or HIV. Modeling the varying aspects of natural infection remains incomplete when using zebrafish and mice. However, the nonhuman primate model of tuberculosis offers a unique and accurate model to investigate host responses to infection, test novel therapeutics, and thoroughly assess preclinical vaccine candidates. Rhesus macaques and cynomolgus macaques manifest the full gamut of clinical and pathological findings in human Mycobacterium tuberculosis infection, including the ability to co-infect macaques with Simian Immunodeficiency Virus to model HIV co-infection. Here we discuss advanced techniques to assay various clinical outcomes of the natural progression of infection as well as therapeutics in development and novel preclinical vaccines. Finally, we survey the translational aspects of nonhuman primate research and argue the urgent need to thoroughly examine preclinical therapeutics and vaccines using this model prior to clinical implementation.


The DosR Regulon Modulates Adaptive Immunity and Is Essential for Mycobacterium tuberculosis Persistence.

  • Smriti Mehra‎ et al.
  • American journal of respiratory and critical care medicine‎
  • 2015‎

Hypoxia promotes dormancy by causing physiologic changes to actively replicating Mycobacterium tuberculosis. DosR controls the response of M. tuberculosis to hypoxia.


TLR7/8 adjuvant overcomes newborn hyporesponsiveness to pneumococcal conjugate vaccine at birth.

  • David J Dowling‎ et al.
  • JCI insight‎
  • 2017‎

Infection is the most common cause of mortality in early life, and immunization is the most promising biomedical intervention to reduce this burden. However, newborns fail to respond optimally to most vaccines. Adjuvantation is a key approach to enhancing vaccine immunogenicity, but responses of human newborn leukocytes to most candidate adjuvants, including most TLR agonists, are functionally distinct. Herein, we demonstrate that 3M-052 is a locally acting lipidated imidazoquinoline TLR7/8 agonist adjuvant in mice, which, when properly formulated, can induce robust Th1 cytokine production by human newborn leukocytes in vitro, both alone and in synergy with the alum-adjuvanted pneumococcal conjugate vaccine 13 (PCV13). When admixed with PCV13 and administered i.m. on the first day of life to rhesus macaques, 3M-052 dramatically enhanced generation of Th1 CRM-197-specific neonatal CD4+ cells, activation of newborn and infant Streptococcus pneumoniae polysaccharide-specific (PnPS-specific) B cells as well as serotype-specific antibody titers, and opsonophagocytic killing. Remarkably, a single dose at birth of PCV13 plus 0.1 mg/kg 3M-052 induced PnPS-specific IgG responses that were approximately 10-100 times greater than a single birth dose of PCV13 alone, rapidly exceeding the serologic correlate of protection, as early as 28 days of life. This potent immunization strategy, potentially effective with one birth dose, could represent a new paradigm in early life vaccine development.


The flavivirus dengue induces hypertrophy of white matter astrocytes.

  • Kim M Lee‎ et al.
  • Journal of neurovirology‎
  • 2016‎

Flaviviruses, including Zika and dengue (DENV), pose a serious global threat to human health. Of the 50+ million humans infected with DENV annually, approximately 1-3 % progress to severe disease manifestations, dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). Several factors are suspected to mediate the course of infection and pathogenesis of DENV infection. DHF and DSS are associated with vascular leakage and neurological sequelae. Our hypothesis was that altered astrocyte activation and morphology would alter the dynamics of the extracellular space and hence, neuronal and vascular function. We investigated the mechanisms of neuropathogenesis DENV infection in rhesus macaques. There were decreased numbers of GFAP immunopositive astrocytes per unit area, although those that remained had increased arbor length and complexity. This was combined with structural hypertrophy of white matter astrocytes in the absence of increased vascular leakage. Combined, these studies show how even low-grade infection with DENV induces measurable changes within the parenchyma of infected individuals.


Recently infiltrating MAC387(+) monocytes/macrophages a third macrophage population involved in SIV and HIV encephalitic lesion formation.

  • Caroline Soulas‎ et al.
  • The American journal of pathology‎
  • 2011‎

Monocytes/macrophages are critical components of HIV and SIV encephalitic lesions. We used in vivo BrdU labeling and markers specific to stages of macrophage differentiation or inflammation to define macrophage heterogeneity and to better define the role of macrophage populations in lesion formation and productive infection. Lesions were heterogeneously composed of resident macrophages (CD68(+)HAM56(+)), perivascular macrophages (CD163(+) CD68(+)MAC387(-)), and recently infiltrated MAC387(+) CD68(-)CD163(-) monocytes/macrophages. At 24 and 48 hours after BrdU inoculation, 30% of MAC387(+) monocytes/macrophages were BrdU(+), consistent with their being recently infiltrated. In perivascular cuffs with low-level SIV replication, MAC387(+) monocytes/macrophages outnumbered CD68(+) macrophages. Conversely, lesions with numerous SIV-p28(+) macrophages and multinucleated giant cells had fewer MAC387(+) monocytes/macrophages. The MAC387(+) cells were not productively infected nor did they express detectable CCR2, unlike perivascular macrophages. Overall, we found that the proportion of MAC387(+) cells tends to be higher than the proportion of CD68(+) macrophages in the brain of animals with mild encephalitis; the ratio was reversed with more severe encephalitis. These results suggest that development of SIV and HIV encephalitis is an active and ongoing process that involves the recruitment and accumulation of: i) nonproductively infected MAC387(+) monocytes/macrophages that are present with inflammation (potentially M1-like macrophages), ii) CD163(+) perivascular macrophages (consistent with M2-like macrophages), and iii) CD68(+) or HAM56(+) resident macrophages. The latter two populations are cellular reservoirs for productive infection.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: