2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 65 papers

Epigenetic upregulation of ARL4C, due to DNA hypomethylation in the 3'-untranslated region, promotes tumorigenesis of lung squamous cell carcinoma.

  • Shinsuke Fujii‎ et al.
  • Oncotarget‎
  • 2016‎

ADP-ribosylation factor (ARF)-like 4c (ARL4C) expression, induced by a combination of Wnt/β-catenin and EGF/Ras signaling, has been demonstrated to form epithelial morphogenesis. ARL4C overexpression, due to Wnt/β-catenin and EGF/Ras signaling alterations, was involved in tumorigenesis. It was also reported that ARL4C expression correlates with DNA hypomethylation in the 3'-untranslated region (UTR) of ARL4C gene during lymphogenesis. The current study was conducted to investigate the expression and functions of ARL4C due to DNA hypomethylation in lung and tongue cancers. Immunohistochemical analyses of tissue specimens obtained from lung and tongue squamous cell carcinoma (SCC) patients revealed that ARL4C is not observed in non-tumor regions, but is strongly expressed at high frequencies in tumor lesions. Although inhibition of Wnt/β-catenin or Ras/MAP kinase signaling did not decrease ARL4C expression in NCI-H520 lung SCC cells, ARL4C DNA was clearly hypomethylated in the 3'-UTR. Ten-eleven translocation methylcytosine dioxygenase (TET) enzyme, which mediates DNA demethylation, was highly expressed in NCI-H520 cells. Knockout of TET family proteins (TET1-3) in NCI-H520 cells reduced 5-hydroxymethylcytosine (5hmC) levels and promoted DNA methylation in the 3'-UTR, leading to the decrease in ARL4C expression and ARL4C-mediated cellular migration. In tumor lesions of ARL4C-positive lung SCC, 5hmC was frequently detected and DNA methylation in the 3'-UTR of ARL4C gene was lower than in non-tumor regions, which were consistent with the Cancer Genome Atlas dataset. These results suggest that ARL4C is expressed due to hypomethylation in the 3'-UTR for certain types of cancers and that ARL4C methylation status is involved in cancer cell function.


microRNA-4717 differentially interacts with its polymorphic target in the PD1 3' untranslated region: A mechanism for regulating PD-1 expression and function in HBV-associated liver diseases.

  • Guoyu Zhang‎ et al.
  • Oncotarget‎
  • 2015‎

Programmed cell death-1 (PD-1) is involved in hepatitis B virus (HBV) infection, the leading cause of hepatocellular carcinoma (HCC) worldwide. Single-nucleotide polymorphism, rs10204525, located in the PD1 3' untranslated regions (UTR), is associated with chronic HBV infection. MicroRNAs (miRNAs) regulate gene expression via specific binding to the target 3'UTR of mRNA. In this study, three miRNAs were predicted to putatively interact with PD1 rs10204525 polymorphic site of allele G. One of them, miRNA-4717, was demonstrated to allele-specifically affect luciferase activity in a dose-dependent manner in cells transfected with vectors containing different rs10204525 alleles. In lymphocytes from chronic HBV patients withrs10204525 genotype GG, miR-4717 mimics significantly decreased PD-1 expression and increased (TNF)-α and interferon (IFN)-γ production. miR-4717 inhibitor significantly increased PD-1 expression and decreased TNF-α and IFN-γ production although not significantly. In lymphocytes from chronic HBV patients with rs10204525 genotype AA, no similar effects were observed. miR-4717 levels in peripheral lymphocytes from patients with HBV-related chronic hepatitis, cirrhosis and HCC were significantly decreased. In conclusion, miR-4717 may allele-specifically regulate PD-1 expression through interaction with the 3' UTR of PD1 mRNA, leading to the alteration of immune regulation and affecting the susceptibility and disease course of chronic HBV infection.


Cis-acting elements in its 3' UTR mediate post-transcriptional regulation of KRAS.

  • Minlee Kim‎ et al.
  • Oncotarget‎
  • 2016‎

Multiple RNA-binding proteins and non-coding RNAs, such as microRNAs (miRNAs), are involved in post-transcriptional gene regulation through recognition motifs in the 3' untranslated region (UTR) of their target genes. The KRAS gene encodes a key signaling protein, and its messenger RNA (mRNA) contains an exceptionally long 3' UTR; this suggests that it may be subject to a highly complex set of regulatory processes. However, 3' UTR-dependent regulation of KRAS expression has not been explored in detail. Using extensive deletion and mutational analyses combined with luciferase reporter assays, we have identified inhibitory and stabilizing cis-acting regions within the KRAS 3' UTR that may interact with miRNAs and RNA-binding proteins, such as HuR. Particularly, we have identified an AU-rich 49-nt fragment in the KRAS 3' UTR that is required for KRAS 3' UTR reporter repression. This element contains a miR-185 complementary element, and we show that overexpression of miR-185 represses endogenous KRAS mRNA and protein in vitro. In addition, we have identified another 49-nt fragment that is required to promote KRAS 3' UTR reporter expression. These findings indicate that multiple cis-regulatory motifs in the 3' UTR of KRAS finely modulate its expression, and sequence alterations within a binding motif may disrupt the precise functions of trans-regulatory factors, potentially leading to aberrant KRAS expression.


MiR-34b-3 and miR-449a inhibit malignant progression of nasopharyngeal carcinoma by targeting lactate dehydrogenase A.

  • Huiling Li‎ et al.
  • Oncotarget‎
  • 2016‎

MicroRNA expression profiling assays have shown that miR-34b/c and miR-449a are down-regulated in nasopharyngeal carcinoma (NPC); however, the targets and functions of miR-34b/c and miR-449a in the pathologenesis of NPC remain elusive. In this study, we verified miR-34b/c and miR-449a were significantly reduced with the advance of NPC. Overexpression of miR-34b-3 and miR-449a suppressed the growth of NPC cells in culture and mouse tumor xenografts. Using tandem mass tags for quantitative labeling and LC-MS/MS analysis to investigate protein changes after restoring expression of miR-34b-3, 251 proteins were found to be down-regulated after miR-34b-3 transfection. Through 3 replicate experiments, we found that miR-34b-3 regulated the expression of 15 potential targeted genes mainly clustered in the key enzymes of glycolysis metabolism, including lactate dehydrogenase A (LDHA). Further investigation revealed that miR-34b-3 and miR-449a negatively regulated LDHA by binding to the 3' untranslated regions of LDHA. Furthermore, LDHA overexpression rescued the miR-34b-3 and miR-449a induced tumor inhibition effect in CNE2 cells. In addition, miR-34b-3 and miR-449a suppressed LDH activity and reduced LD content, which were directly induced by downregulation of the LDHA. Our findings suggest that miR-34b-3 and miR-449a suppress the development of NPC through regulation of glycolysis via targeting LDHA and may be potential therapeutic targets for the treatment of NPC.


Detection of canonical A-to-G editing events at 3' UTRs and microRNA target sites in human lungs using next-generation sequencing.

  • Ramani Soundararajan‎ et al.
  • Oncotarget‎
  • 2015‎

RNA editing is a post-transcriptional modification of RNA. The majority of these changes result from adenosine deaminase acting on RNA (ADARs) catalyzing the conversion of adenosine residues to inosine in double-stranded RNAs (dsRNAs). Massively parallel sequencing has enabled the identification of RNA editing sites in human transcriptomes. In this study, we sequenced DNA and RNA from human lungs and identified RNA editing sites with high confidence via a computational pipeline utilizing stringent analysis thresholds. We identified a total of 3,447 editing sites that overlapped in three human lung samples, and with 50% of these sites having canonical A-to-G base changes. Approximately 27% of the edited sites overlapped with Alu repeats, and showed A-to-G clustering (>3 clusters in 100 bp). The majority of edited sites mapped to either 3' untranslated regions (UTRs) or introns close to splice sites; whereas, only few sites were in exons resulting in non-synonymous amino acid changes. Interestingly, we identified 652 A-to-G editing events in the 3' UTR of 205 target genes that mapped to 932 potential miRNA target binding sites. Several of these miRNA edited sites were validated in silico. Additionally, we validated several A-to-G edited sites by Sanger sequencing. Altogether, our study suggests a role for RNA editing in miRNA-mediated gene regulation and splicing in human lungs. In this study, we have generated a RNA editome of human lung tissue that can be compared with other RNA editomes across different lung tissues to delineate a role for RNA editing in normal and diseased states.


Distinct distributions of genomic features of the 5' and 3' partners of coding somatic cancer gene fusions: arising mechanisms and functional implications.

  • Yongzhong Zhao‎ et al.
  • Oncotarget‎
  • 2017‎

The genomic features and arising mechanisms of coding cancer somatic gene fusions (CSGFs) largely remain elusive. In this study, we show the gene origin stratification pattern of CSGF partners that fusion partners in human cancers are significantly enriched for genes with the gene age ofEuteleostomes and with the gene family age of Bilateria. GC skew (a measurement of G, C nucleotide content bias, (G-C)/(G+C)) is a useful measurement to indicate the DNA leading strand, lagging strand, replication origin, and replication terminal and DNA-RNA R-loop formation. We find that GC skew bias at the 5 prime (5') but not the 3 prime (3') partners of CSGFs, coincident with the polarity feature of gene expression breadth that the 5' partners are more ubiquitous while the 3' fusion partners are more tissue specific in general. We reveal distinct length and composition distributions of 5' and 3' of CSGFs, including sequence features corresponded to the 5' untranslated regions (UTRs), 3' UTRs, and the N-terminal sequences of the encoded proteins. Oncogenic somatic gene fusions are most enriched for the 5' and 3' genes' somatic amplification alongside a substantial proportion of other types of combinations. At the function level, 5' partners of CSGFs appear more likely to be tumour suppressor genes while many 3' partners appear to be proto-oncogene. Such distinct polarities of CSGFs at the evolutionary, structural, genomic and functional levels indicate the heterogeneous arsing mechanisms of CSGFs including R-loops and suggest potential novel targeted therapeutics specific to CSGF functional categories.


Double-strand break repair and colorectal cancer: gene variants within 3' UTRs and microRNAs binding as modulators of cancer risk and clinical outcome.

  • Alessio Naccarati‎ et al.
  • Oncotarget‎
  • 2016‎

Genetic variations in 3' untranslated regions of target genes may affect microRNA binding, resulting in differential protein expression. microRNAs regulate DNA repair, and single-nucleotide polymorphisms in miRNA binding sites (miRSNPs) may account for interindividual differences in the DNA repair capacity. Our hypothesis is that miRSNPs in relevant DNA repair genes may ultimately affect cancer susceptibility and impact prognosis.In the present study, we analysed the association of polymorphisms in predicted microRNA target sites of double-strand breaks (DSBs) repair genes with colorectal cancer (CRC) risk and clinical outcome. Twenty-one miRSNPs in non-homologous end-joining and homologous recombination pathways were assessed in 1111 cases and 1469 controls. The variant CC genotype of rs2155209 in MRE11A was strongly associated with decreased cancer risk when compared with the other genotypes (OR 0.54, 95% CI 0.38-0.76, p = 0.0004). A reduced expression of the reporter gene was observed for the C allele of this polymorphism by in vitro assay, suggesting a more efficient interaction with potentially binding miRNAs. In colon cancer patients, the rs2155209 CC genotype was associated with shorter survival while the TT genotype of RAD52 rs11226 with longer survival when both compared with their respective more frequent genotypes (HR 1.63, 95% CI 1.06-2.51, p = 0.03 HR 0.60, 95% CI 0.41-0.89, p = 0.01, respectively).miRSNPs in DSB repair genes involved in the maintenance of genomic stability may have a role on CRC susceptibility and clinical outcome.


A single-nucleotide polymorphism in the 3'-UTR region of the adipocyte fatty acid binding protein 4 gene is associated with prognosis of triple-negative breast cancer.

  • Wenmiao Wang‎ et al.
  • Oncotarget‎
  • 2016‎

Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor prognosis and high heterogeneity. The aim of this study was to screen patients for single-nucleotide polymorphisms (SNPs) associated with the prognosis of TNBC. Database-derived SNPs (NextBio, Ensembl, NCBI and MirSNP) located in the 3'-untranslated regions (3'-UTRs) of genes that are differentially expressed in breast cancer were selected. The possible associations between 111 SNPs and progression risk among 323 TNBC patients were investigated using a two-step case-control study with a discovery cohort (n=162) and a validation cohort (n=161). We identified the rs1054135 SNP in the adipocyte fatty acid binding protein 4 (FABP4) gene as a predictor of TNBC recurrence. The G allele of rs1054135 was associated with a reduced risk of disease progression as well as a prolonged disease-free survival time (DFS), with a hazard ratio (HR) for recurrence in the combined sample of 0.269 [95%CI: 0.098-0.735;P=0.001]. Notably, for individuals having the rs1054135 SNP with the AA/AG genotype, the magnitude of increased tumour recurrence risk for overweight patients (BMI≥25kg/m2) was significantly elevated (HR2.53; 95%CI: 1.06-6.03). Immunohistochemical staining of adipocytes adjacent to TNBC tissues showed that the expression level of FABP4 was statistically significantly lower in patients with the rs1054135-GG genotype and those in the disease-free group (P=0.0004 and P=0.0091, respectively). These results suggested that the expression of a lipid metabolism-related gene and an important SNP in the 3'-UTR of FABP4 are associated with TNBC prognosis, which may aid in the screening of high-risk patients with TNBC recurrence and the development of novel chemotherapeutic agents.


Genetic polymorphisms of long non-coding RNA GAS5 predict platinum-based concurrent chemoradiotherapy response in nasopharyngeal carcinoma patients.

  • Zhen Guo‎ et al.
  • Oncotarget‎
  • 2017‎

LncRNA GAS5 plays a tumor suppressive role in a variety of human cancers and promises to be a novel diagnostic biomarker, therapy target, as well as prognostic biomarker. However, the role of GAS5 in nasopharyngeal carcinoma (NPC) remains elusive. The objective of the present study was to evaluate the effect of single nucleotide polymorphisms (SNPs) in GAS5 on treatment efficacy and toxicity in NPC patients receiving chemoradiotherapy. Three potentially functional SNPs of GAS5 were genotyped in 267 NPC patients and validated in another 238 NPC patients treated with chemoradiotherapy from southern China. Multivariate logistic regression analyses and stratification analyses were used to estimate the association of candidate SNPs and chemoradiotherapy efficacy and toxic reactions. Our results showed that rs2067079 kept a consistent association with severe myelosuppression and severe neutropenia in discovery set (OR=2.403, P=0.009; OR=2.454, P=0.015; respectively), validation set (OR=3.653, P=0.027; OR=4.767, P=0.016; respectively), and combined dataset (OR=1.880, P=0.007; OR=2.079, P=0.005; respectively). rs2067079 CT genotype carriers presented an even more remarkable increased risk of severe myelosuppression (OR=3.878, P=0.003) and severe neutropenia (OR=3.794, P=0.009) in subgroups taking paclitaxel+platinum as concurrent chemoradiotherapy regimen. Besides, we found a gene-does effect of rs6790, with the incidence rate of severe myelosuppression decreased from 23.56% to 17.21% to 10% and the incidence rate of severe neutropenia decreased from 30.4% to 20.9% to 17.1% for rs6790 GG vs GA vs AA genotype carriers. Our results indicate the potential role of lncRNA GAS5 polymorphisms rs2067079 and rs6790 as predictive biomarkers for chemoradiotherapy induced toxic reactions in NPC patients.


ERK8 is a novel HuR kinase that regulates tumour suppressor PDCD4 through a miR-21 dependent mechanism.

  • Urszula Liwak-Muir‎ et al.
  • Oncotarget‎
  • 2016‎

Programmed cell death 4 (PDCD4) is a tumour suppressor implicated in cancer development and progression and was recently identified as a repressor of cap-independent translation of specific genes involved in the regulation of apoptosis. We show that the RNA-binding protein HuR binds to the PDCD4 3'UTR to protect it from miR-21-induced silencing. However, following H2O2 treatment, PDCD4 mRNA is degraded via miR-21 binding. Importantly, we identify HuR as a novel substrate of the ERK8 kinase pathway in response to H2O2 treatment. We show that phosphorylation of HuR by ERK8 prevents it from binding to PDCD4 mRNA and allows miR-21-mediated degradation of PDCD4.


TLR1 polymorphisms are significantly associated with the occurrence, presentation and drug-adverse reactions of tuberculosis in Western Chinese adults.

  • Wu Peng‎ et al.
  • Oncotarget‎
  • 2018‎

Obtaining further knowledge regarding single nucleotide polymorphisms in the Toll-like receptor1 gene is of great importance to elucidate immunopathogenesis and management of tuberculosis.


Identification of miR-30b-3p and miR-30d-5p as direct regulators of androgen receptor signaling in prostate cancer by complementary functional microRNA library screening.

  • Binod Kumar‎ et al.
  • Oncotarget‎
  • 2016‎

The Androgen Receptor (AR) plays a key role in prostate biology and in the progression of prostate cancer (PCa) to castration resistance. The role of microRNAs (miRNAs) in aberrant AR signaling have not been fully characterized. Here we screened a library of 810 miRNA mimics to identify miRNAs that alter AR activity in complementary functional assays including protein lysate microarray (LMA) quantification of AR and PSA protein levels, AR transcriptional reporter activity, and AR-positive PCa cell viability. Candidate AR-regulating miRNAs were verified through AR transcriptional reporter and cell viability assays. MiRNA binding sites were found within the AR 3'-untranslated region (UTR) and within the AR and AR-V7 coding regions. MiRNA activity was characterized by western blotting, 3'-UTR reporter assay, and AR-GFP and AR-V7-GFP reporter assays. Results uncovered miR-30 family members as direct AR inhibitors. Inhibition of endogenous miR-30b-3p and miR-30d-5p enhanced AR expression and androgen-independent cell growth. Droplet digital RT-PCR quantification of miR-30c-5p and miR-30d-5p revealed significantly reduced levels in metastatic castration resistant PCa (CRPC), when compared to healthy prostate tissues. MiR-30d-5p levels were inversely correlated with AR activity, as measured by PSA mRNA, in metastatic CRPC. Collectively, these studies provide a comprehensive evaluation of AR-regulating miRNAs in PCa.


Tristetraprolin inhibits mitochondrial function through suppression of α-Synuclein expression in cancer cells.

  • Mai-Tram Vo‎ et al.
  • Oncotarget‎
  • 2017‎

Mitochondrial dynamics play critical roles in maintaining mitochondrial functions. Here, we report a novel mechanism for regulation of mitochondrial dynamics mediated by tristetraprolin (TTP), an AU-rich element (ARE)-binding protein. Overexpression of TTP resulted in elongated mitochondria, down-regulation of mitochondrial oxidative phosphorylation, reduced membrane potential, cytochrome c release, and increased apoptotic cell death in cancer cells. TTP overexpression inhibited the expression of α-Synuclein (α-Syn). TTP bound to the ARE within the mRNA 3'-untranslated regions (3'-UTRs) of α-Syn and enhanced the decay of α-Syn mRNA. Overexpression of α-Syn without the 3'-UTR restored TTP-induced defects in mitochondrial morphology, mitochondrial oxidative phosphorylation, membrane potential, and apoptotic cell death. Taken together, our data demonstrate that TTP acts as a regulator of mitochondrial dynamics through enhancing degradation of α-Syn mRNA in cancer cells. This finding will increase understanding of the molecular basis of mitochondrial dynamics.


MicroRNA-613 inhibits cell growth, migration and invasion of papillary thyroid carcinoma by regulating SphK2.

  • Wangwang Qiu‎ et al.
  • Oncotarget‎
  • 2016‎

MicroRNAs (miRNAs) have emerged as important gene regulators and are recognized as key players in carcinogenesis. In this study, we investigated the biological function and mechanism of miR-613 in the regulation of papillary thyroid cancer (PTC) development. We found that miR-613 was downregulated in PTC cell lines and tissues, and overexpression of miR-613 significantly suppressed PTC cell growth, migration and invasion in vitro and inhibited tumor growth in vivo. We identified the gene for sphingosine kinase 2 (SphK2) as a direct target of miR-613. Overexpression of miR-613 significantly repressed SphK2 expression by directly targeting its 3'-untranslated regions (3'-UTR) and restoration of SphK2 reversed the inhibitory effects of miR-613 on PTC cell growth and invasion. Taken together, our results indicated that miR-613 functions as a tumor suppressor in PTC and its suppressive effect is mediated by repressing SphK2 expression.


MicroRNA-3127 promotes cell proliferation and tumorigenicity in hepatocellular carcinoma by disrupting of PI3K/AKT negative regulation.

  • Jianxin Jiang‎ et al.
  • Oncotarget‎
  • 2015‎

Recent studies have shown that multiple phosphatases deactivate the PI3K/AKT signaling pathway. Here we demonstrated that, by suppressing multiple phosphatases, miR-3127 promotes growth of hepatocellular carcinoma (HCC). Our study also reveals clinical significance of miR-3127 expression in HCC patients. MiR-3127 expression was markedly upregulated in HCC tissues and cells. Furthermore, high miR-3127 expression was associated with an aggressive phenotype and poor prognosis. MiR-3127 overexpression promoted HCC cell proliferation in vitro and tumor growth in vivo. Also, miR-3127 accelerated G1-S transition by activating AKT/ FOXO1 signaling, by directly targeting the 3' untranslated regions (3`UTR) of pleckstrin homology domain leucine-rich repeat protein phosphatase 1/2 (PHLPP1/2), inositol polyphosphate phosphatase 4A (INPP4A), and inositol polyphosphate-5-phosphatase J (INPP5J) mRNA, repressing their expression. In agreement, the miRNA antagonist antagomir-3127 suppressed HCC cell proliferation and tumor growth by inhibiting the AKT/FOXO1 signaling. Taken together, these findings suggest that silencing miR-3127 might be a potential therapeutic strategy.


microRNA-19a protects osteoblasts from dexamethasone via targeting TSC1.

  • Gang Liu‎ et al.
  • Oncotarget‎
  • 2018‎

Activation of mTOR complex 1 (mTORC1) could protect human osteoblasts from dexamethasone. Tuberous sclerosis complex 1 (TSC1) is mTORC1 upstream inhibitory protein. We demonstrate here that microRNA-19a ("miR-19a", -3p) targets the 3' untranslated regions of TSC1 mRNA. Expression of miR-19a downregulated TSC1 in OB-6 osteoblastic cells and primary human osteoblasts. miR-19a activated mTORC1 and protected human osteoblasts from dexamethasone. mTORC1 inhibition, by RAD001 or Raptor shRNA, almost completely abolished miR-19a-induced osteoblast cytoprotection against dexamethasone. Knockdown of TSC1 by targeted shRNA similarly induced mTORC1 activation and protected osteoblasts. Moreover, miR-19a activated mTORC1-dependent NF-E2-related factor 2 (Nrf2) signaling and inhibited dexamethasone-induced reactive oxygen species production in osteoblasts. Together, miR-19a protects human osteoblasts from dexamethasone possibly via targeting TSC1-mTORC1 signaling.


A functional variant in GREM1 confers risk for colorectal cancer by disrupting a hsa-miR-185-3p binding site.

  • Jiaoyuan Li‎ et al.
  • Oncotarget‎
  • 2017‎

The transforming growth factor beta (TGF-β) pathway has been implicated in carcinogenesis of intestinal canal. Except for common variants indentified by genome-wide association studies, variants with lower frequency can also explain a part of the disease heritability, especially those in gene regulatory regions. In this study, we searched for colorectal cancer (CRC) related functional low-frequency variants (minor allele frequency 1-5%) in untranslated regions (UTR) involved in the TGF-β signaling using a next-generation sequencing based approach. A case-control study including 1,841 CRC cases and 1,837 controls was performed to identify CRC associated variants and biological experiments were applied to further explore the potential functions of the significant variants. Three low-frequency UTR variants were selected as our candidates and subsequent association analyses showed that a low-frequency variant rs12915554 in the 3' UTR of GREM1 was significantly associated with CRC risk (Additive model: OR=1.43, 95%CI: 1.04-1.95, P=0.026). Functional annotations suggested that rs12915554 variation increased the expression of GREM1 by perturbing a hsa-miR-185-3p binding site. Moreover, higher expression level of GREM1 was investigated in colon tumor tissues compared with adjacent normal tissues using TCGA data. In conclusion, low-frequency UTR variant rs12915554 in the gene GREM1 was in relation to CRC susceptibility in a Chinese population and this variation might promote CRC development through enhancing GREM1 expression in a miRNA-mediated posttranscriptional manner.


MicroRNA miR-98 inhibits tumor angiogenesis and invasion by targeting activin receptor-like kinase-4 and matrix metalloproteinase-11.

  • Vinayakumar Siragam‎ et al.
  • Oncotarget‎
  • 2012‎

Angiogenesis and invasion are essential processes for solid tumor growth and dissemination. The tumor development process can be dependent on the activation of a series of signaling pathways, including growth factor-activated pathways. MicroRNAs have been shown to be critical for tumorigenesis, but their roles in cancer angiogenesis, invasion and other signaling pathways important for tumor development are still unclear in the context of tumor biology. We investigated the role of microRNA miR-98 in regulating tumor growth, invasion, and angiogenesis using a highly aggressive breast cancer model in vitro and in vitro. We found that the expression of miR-98 inhibited breast cancer cell proliferation, survival, tumor growth, invasion, and angiogenesis. Conversely, inhibition of endogenous miR-98 promoted cell proliferation, survival, tumor growth, invasion, and angiogenesis. It appeared that miR-98 inhibited angiogenesis by modulating endothelial cell activities including cell spreading, cell invasion and tubule formation. Interestingly, miR-98 reduced the expression of ALK4 and MMP11, both of which were potential targets of miR-98. Transfection of an anti-miR-98 construct increased the expression of both targets. We confirmed that mir-98 targeted the 3'-untranslated regions of ALK4 and MMP11. Finally, ALK4- and MMP11-specific siRNAs inhibited breast cancer cell proliferation, survival, and angiogenesis. Rescue experiments with ALK4 and MMP11 constructs reversed the anti-proliferative, anti-invasive and anti-angiogenic effects of miR-98. Our findings define a regulatory role of miR-98 in tumor angiogenesis and invasion through repressed ALK4 and MMP11 expression.


Epigenetically regulated miR-145 suppresses colon cancer invasion and metastasis by targeting LASP1.

  • Wei Wang‎ et al.
  • Oncotarget‎
  • 2016‎

MiR-145 is a tumor-suppressive microRNA that participates in the malignant progression of colorectal cancer (CRC). Although miR-145 has been reported to inhibit proliferation and to induce apoptosis of CRC cells, the reports about its role in invasion and metastasis are controversial. The regulation of miR-145 its own expression also requires further elucidation. In this study, we firstly found that miR-145 is markedly downregulated in the metastatic tumors of CRC patients. Then through gain- and loss-of function studies, we demonstrated that miR-145 suppresses the invasion and metastasis of CRC cells. We also provided experimental evidences which include direct binding assays and verifications on tissue specimens to confirm that LIM and SH3 protein 1 (LASP1) is a direct target of miR-145. Furthermore, we identified the core promoter regions of miR-145 and observed the cooperation between histone methylation and transcription factors through binding to these core promoter regions to regulate the expression of miR-145 in CRC cells. Our study provides an insight into the regulatory network in CRC cells, thus offering new targets for treating CRC patients.


Direct repression of the oncogene CDK4 by the tumor suppressor miR-486-5p in non-small cell lung cancer.

  • Yang Shao‎ et al.
  • Oncotarget‎
  • 2016‎

MicroRNAs are a class of non-coding single-stranded RNA, 20-23 nucleotide in length, which can be involved in the regulation of gene expression. Through binding with 3'-untranslated regions (3'-UTR), microRNAs can cause degradation of target mRNAs or inhibition of translation, and thus regulating the expression of genes at the post-transcriptional level. In this study, we found that miR-486-5p was significantly downregulated in non-small cell lung cancer (NSCLC) tissues and cell lines, suggesting that miR-486-5p might function as a tumor suppressor in lung cancer. Additionally, we showed that CDK4, an oncogene that plays an important role in cell cycle G1/S phase progression, was directly targeted by miR-486-5p. Furthermore, our data reveals that knockdown of CDK4 by siRNA can inhibit cell proliferation, promote apoptosis, and impede cell-cycle progression. In epigenetics, the upstream promoter of miR-486-5p was strongly regulated by methylation in NSCLC. Collectively, our results suggest that miR-486-5p could not only inhibit NSCLC by downregulating the expression of CDK4, but also be as a promising and potent therapy in the near future.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: