Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 230 papers

NDRG2 expression decreases with tumor stages and regulates TCF/beta-catenin signaling in human colon carcinoma.

  • Young-Jun Kim‎ et al.
  • Carcinogenesis‎
  • 2009‎

NDRG (N-Myc downstream-regulated gene)-2 is a member of the NDRG family. Although it has been suggested that NDRG2 is involved in cellular differentiation and tumor suppression, its intracellular signal and regulatory mechanism are not well known. Here, we show the differential expression of NDRG2 in human colon carcinoma cell lines and tissues by reverse transcription-polymerase chain reaction and immunohistochemical analyses with monoclonal antibody against NDRG2. NDRG2 was strongly expressed in normal colonic mucosa and colonic adenomatous tissues (25 of 25) but not in all invasive cancer tissues [44 of 99 (44%)]. Most distinctive results indicated that the high expression level of NDRG2 has a positive correlation with tumor differentiation and inverse correlation with tumor invasion depth and Dukes' stage of colon adenocarcinoma. To investigate the roles of NDRG2 in tumorigenesis, we used in vitro cell culture system. SW620 colon cancer cell line with a low level of intrinsic NDRG2 protein was transfected with NDRG2-expressing plasmid. TOPflash luciferase reporter assay showed that the transcriptional activity of T-cell factor (TCF)/lymphoid enhancer factor (LEF) was reduced by NDRG2 introduction, but not by the introduction of mutant NDRG2 generated by deletion or site-directed mutagenesis. Intracellular beta-catenin levels were slightly reduced in the NDRG2-transfected SW620 cells and this regulation of beta-catenin stability and TCF/LEF activity were mediated through the modulation of glycogen synthase kinase-3beta activity by NDRG2 function. Our results suggest that NDRG2 might play a pivotal role as a potent tumor suppressor by the attenuation of TCF/beta-catenin signaling for the maintenance of healthy colon tissues.


CpG methylation in exon 1 of transcription factor 4 increases with age in normal gastric mucosa and is associated with gene silencing in intestinal-type gastric cancers.

  • Seung-Kyoon Kim‎ et al.
  • Carcinogenesis‎
  • 2008‎

Transcriptional factor 4 (TCF4), encoding a basic helix-loop-helix transcriptional factor, has recently been demonstrated as a causative gene for Pitt-Hopkins syndrome, a neurodevelopmental disease. Examination of gastric cancers using the restriction landmark genomic scanning technique revealed methylation at a NotI enzyme site in TCF4 intron 8 and further identified CpG dinucleotide hypermethylation in TCF4 exon 1, strongly associated with gene silencing in gastric cancer cell lines. Treatment with 5-aza-2'-deoxycytidine and/or trichostatin A restored TCF4 expression in TCF4-silenced gastric cancer cell lines. Real-time reverse transcription-polymerase chain reaction analysis of 77 paired primary gastric tumor samples revealed that 38% of analyzed tumors had a >2-fold decrease in TCF4 expression compared with adjacent normal-appearing tissue, and the decrease significantly correlated with increased CpG methylation in TCF4 exon 1. Clinicopathologic data showed that decreased TCF4 expression occurred significantly more frequently in intestinal-type (22/37, 59%) than in diffuse-type (7/37, 19%) gastric cancers (P = 0.0004) and likewise more frequently in early (12/18, 67%) than in advanced (17/59, 29%) gastric cancers (P = 0.004). CpG methylation markedly increased with patient age among normal-appearing tissues, suggesting that CpG methylation in gastric mucosa may be one of the earliest events in carcinogenesis of intestinal-type gastric cancers. Furthermore, ectopic expression of TCF4 decreased cell growth in a gastric cancer cell line, and the knock down of TCF4 using small interfering RNA increased cell migration. Based on these results, we propose that the observed frequent epigenetic-mediated TCF4 silencing plays a role in tumor formation and progression.


Copy number alterations in urothelial carcinomas: their clinicopathological significance and correlation with DNA methylation alterations.

  • Naotaka Nishiyama‎ et al.
  • Carcinogenesis‎
  • 2011‎

The aim of this study was to clarify the genetic backgrounds underlying the clinicopathological characteristics of urothelial carcinomas (UCs). Array comparative genomic hybridization analysis using a 244K oligonucleotide array was performed on 49 samples of UC tissue. Losses of 2q33.3-q37.3, 4p15.2-q13.1 and 5q13.3-q35.3 and gains of 7p11.2-q11.23 and 20q13.12-q13.2 were correlated with higher histological grade, and gain of 7p21.2-p21.12 was correlated with deeper invasion. Losses of 6q14.1-q27 and 17p13.3-q11.1 and gains of 19q13.12-q13.2 and 20q13.12-q13.33 were correlated with lymph vessel involvement. Loss of 16p12.2-p12.1 and gain of 3q26.32-q29 were correlated with vascular involvement. Losses of 5q14.1-q23.1, 6q14.1-q27, 8p22-p21.3, 11q13.5-q14.1 and 15q11.2-q22.2 and gains of 7p11.2-q11.22 and 19q13.12-q13.2 were correlated with the development of aggressive non-papillary UCs. Losses of 1p32.2-p31.3, 10q11.23-q21.1 and 15q21.3 were correlated with tumor recurrence. Unsupervised hierarchical clustering analysis based on copy number alterations clustered UCs into three subclasses: copy number alterations associated with genome-wide DNA hypomethylation, regional DNA hypermethylation on C-type CpG islands and genome-wide DNA hypo- and hypermethylation were accumulated in clusters A, B(1) and B(2), respectively. Tumor-related genes that may encode therapeutic targets and/or indicators useful for the diagnosis and prognostication of UCs should be explored in the above regions. Both genetic and epigenetic events appear to accumulate during urothelial carcinogenesis, reflecting the clinicopathological diversity of UCs.


Derepression of CLDN3 and CLDN4 during ovarian tumorigenesis is associated with loss of repressive histone modifications.

  • Mi Jeong Kwon‎ et al.
  • Carcinogenesis‎
  • 2010‎

Unlike epigenetic silencing of tumor suppressor genes, the role of epigenetic derepression of cancer-promoting genes or oncogenes in carcinogenesis remains less well understood. The tight junction proteins claudin-3 and claudin-4 are frequently overexpressed in ovarian cancer and their overexpression was previously reported to promote the migration and invasion of ovarian epithelial cells. Here, we show that the expression of claudin-3 and claudin-4 is repressed in ovarian epithelial cells in association with promoter 'bivalent' histone modifications, containing both the activating trimethylated histone H3 lysine 4 (H3K4me3) mark and the repressive mark of trimethylated histone H3 lysine 27 (H3K27me3). During ovarian tumorigenesis, derepression of CLDN3 and CLDN4 expression correlates with loss of H3K27me3 in addition to trimethylated histone H4 lysine 20 (H4K20me3), another repressive histone modification. Although CLDN4 repression was accompanied by both DNA hypermethylation and repressive histone modifications, DNA methylation was not required for CLDN3 repression in immortalized ovarian epithelial cells. Moreover, activation of both CLDN3 and CLDN4 in ovarian cancer cells was associated with simultaneous changes in multiple histone modifications, whereas H3K27me3 loss alone was insufficient for their derepression. CLDN4 repression was robustly reversed by combined treatment targeting both DNA demethylation and histone acetylation. Our study strongly suggests that in addition to the well-known chromatin-associated silencing of tumor suppressor genes, epigenetic derepression by the conversely related loss of repressive chromatin modifications also contributes to ovarian tumorigenesis via activation of cancer-promoting genes or candidate oncogenes.


The role of EZH2 and DNA methylation in the silencing of the tumour suppressor RUNX3 in colorectal cancer.

  • Liudmila L Kodach‎ et al.
  • Carcinogenesis‎
  • 2010‎

In gastric cancer, a new epigenetic mechanism of tumour suppressor loss has been suggested where the histone methyltransferase enhancer of zeste homolog 2 (EZH2) is responsible for loss of expression of RUNX3. This is consistent with EZH2 upregulation in multiple cancer types being associated with poor prognosis. We investigated whether EZH2 influences the expression of RUNX3 in colorectal cancer (CRC) and whether this is independent of methylation. We determined protein and messenger RNA (mRNA) levels of EZH2 and RUNX3 and assessed RUNX3 methylation with methylation-specific polymerase chain reaction using 72 human CRCs and 8 CRC cell lines. We assessed the effect of efficient RNA interference-mediated knockdown of EZH2 on RUNX3 levels, cell viability and H3K27 trimethylation of the RUNX3 promoter using chromatin immunoprecipitation. Despite higher levels of EZH2 and lower levels of RUNX3 in CRC specimens in general, no inverse correlation between EZH2 and RUNX3 in paired samples was found arguing against a major role for histone methylation in silencing RUNX3 in CRC. Conversely, downregulation of RUNX3 mRNA in the same tumours was associated with RUNX3 DNA methylation (P < 0.05). In cell lines, knockdown of EZH2 removed the repressive chromatin marks from RUNX3 but did not result in RUNX3 re-expression. However, it prevented the re-silencing of RUNX3 after the removal of demethylating agents. In conclusion, DNA methylation is primarily responsible for the transcriptional silencing of RUNX3 in CRC, but EZH2 and histone methylation are necessary for its methylation-dependent re-silencing after the removal of demethylating agents. These results would predict that inhibitors of EZH2 and histone methylation would enhance the effects of demethylating agents in cancer therapy.


Tumor-promoting/progressing role of additional chromosome instability in hepatic carcinogenesis in Sgo1 (Shugoshin 1) haploinsufficient mice.

  • Hiroshi Y Yamada‎ et al.
  • Carcinogenesis‎
  • 2015‎

A major etiological risk factor for hepatocellular carcinoma (HCC) is infection by Hepatitis viruses, especially hepatitis B virus and hepatitis C virus. Hepatitis B virus and hepatitis C virus do not cause aggressive activation of an oncogenic pathway, but they transactivate a broad array of genes, cause chronic inflammation, and, through interference with mitotic processes, lead to mitotic error-induced chromosome instability (ME-CIN). However, how ME-CIN is involved in the development of HCC remains unclear. Delineating the effect of ME-CIN on HCC development should help in identifying measures to combat HCC. In this study, we used ME-CIN model mice haploinsufficient in Shugoshin 1 (Sgo1(-/+)) to assess the role of ME-CIN in HCC development. Treatment with the carcinogen azoxymethane caused Sgo1(-/+) ME-CIN model mice to develop HCCs within 6 months, whereas control mice developed no HCC (P < 0.003). The HCC development was associated with expression of early HCC markers (glutamine synthetase, glypican 3, heat shock protein 70, and the serum marker alpha fetoprotein), although without fibrosis. ME-CIN preceded the expression of HCC markers, suggesting that ME-CIN is an important early event in HCC development. In 12-month-old untreated Sgo1 mice, persistent DNA damage, altered gene expression, and spontaneous HCCs were observed. Sgo1 protein accumulated in response to DNA damage in vitro. Overall, Sgo1(-/+)-mediated ME-CIN strongly promoted/progressed development of HCC in the presence of an initiator carcinogen, and it had a mild initiator effect by itself. Use of the ME-CIN model mice should help in identifying drugs to counteract the effects of ME-CIN and should accelerate anti-HCC drug development.


PU.1 downregulation in murine radiation-induced acute myeloid leukaemia (AML): from molecular mechanism to human AML.

  • Tom Verbiest‎ et al.
  • Carcinogenesis‎
  • 2015‎

The transcription factor PU.1, encoded by the murine Sfpi1 gene (SPI1 in humans), is a member of the Ets transcription factor family and plays a vital role in commitment and maturation of the myeloid and lymphoid lineages. Murine studies directly link primary acute myeloid leukaemia (AML) and decreased PU.1 expression in specifically modified strains. Similarly, a radiation-induced chromosome 2 deletion and subsequent Sfpi1 point mutation in the remaining allele lead to murine radiation-induced AML. Consistent with murine data, heterozygous deletion of the SPI1 locus and mutation of the -14kb SPI1 upstream regulatory element were described previously in human primary AML, although they are rare events. Other mechanisms linked to PU.1 downregulation in human AML include TP53 deletion, FLT3-ITD mutation and the recurrent AML1-ETO [t(8;21)] and PML-RARA [t(15;17)] translocations. This review provides an up-to-date overview on our current understanding of the involvement of PU.1 in the initiation and development of radiation-induced AML, together with recommendations for future murine and human studies.


A novel onco-miR-365 induces cutaneous squamous cell carcinoma.

  • Meijuan Zhou‎ et al.
  • Carcinogenesis‎
  • 2013‎

The expression levels of miR-365 vary in different malignancies. Herein, we found that miR-365 was overexpressed in both cells and clinical specimens of cutaneous squamous cell carcinoma (SCC). We demonstrated that the HaCaT(pre-miR-365-2) cell line, which overexpressed miR-365, could induce subcutaneous tumors in vivo. Antagomir-365, an anti-miR-365 oligonucleotide, inhibited cutaneous tumor formation in vivo, along with G1 phase arrest and apoptosis of cancer cells. These findings suggest that miR-365 may act as an onco-miR in cutaneous SCC both in vitro and in vivo. The present study provides valuable insight into the role of miR-365 in cutaneous SCC formation, which can help develop new drug and miR-365 target-based therapies for cutaneous SCC.


Vitamin D is a determinant of mouse intestinal Lgr5 stem cell functions.

  • Karina Peregrina‎ et al.
  • Carcinogenesis‎
  • 2015‎

Lgr5+ intestinal crypt base columnar cells function as stem cells whose progeny populate the villi, and Lgr5+ cells in which Apc is inactivated can give rise to tumors. Surprisingly, these Lgr5+ stem cell properties were abrogated by the lower dietary vitamin D and calcium in a semi-purified diet that promotes both genetically initiated and sporadic intestinal tumors. Inactivation of the vitamin D receptor in Lgr5+ cells established that compromise of Lgr5 stem cell function was a rapid, cell autonomous effect of signaling through the vitamin D receptor. The loss of Lgr5 stem cell function was associated with presence of Ki67 negative Lgr5+ cells at the crypt base. Therefore, vitamin D, a common nutrient and inducer of intestinal cell maturation, is an environmental factor that is a determinant of Lgr5+ stem cell functions in vivo. Since diets used in reports that establish and dissect mouse Lgr5+ stem cell activity likely provided vitamin D levels well above the range documented for human populations, the contribution of Lgr5+ cells to intestinal homeostasis and tumor formation in humans may be significantly more limited, and variable in the population, then suggested by published rodent studies.


Base excision repair capacity in informing healthspan.

  • Boris M Brenerman‎ et al.
  • Carcinogenesis‎
  • 2014‎

Base excision repair (BER) is a frontline defense mechanism for dealing with many common forms of endogenous DNA damage, several of which can drive mutagenic or cell death outcomes. The pathway engages proteins such as glycosylases, abasic endonucleases, polymerases and ligases to remove substrate modifications from DNA and restore the genome back to its original state. Inherited mutations in genes related to BER can give rise to disorders involving cancer, immunodeficiency and neurodegeneration. Studies employing genetically defined heterozygous (haploinsufficient) mouse models indicate that partial reduction in BER capacity can increase vulnerability to both spontaneous and exposure-dependent pathologies. In humans, measurement of BER variation has been imperfect to this point, yet tools to assess BER in epidemiological surveys are steadily evolving. We provide herein an overview of the BER pathway and discuss the current efforts toward defining the relationship of BER defects with disease susceptibility.


Mirk/dyrk1B kinase is upregulated following inhibition of mTOR.

  • Xiaobing Deng‎ et al.
  • Carcinogenesis‎
  • 2014‎

The PI3K/PTEN/Akt/mTOR/p70S6K pathway is one of the most frequently deregulated signaling pathways in solid tumors and has a functional role in drug resistance. However, targeting this pathway leads to compensatory activation of several mediators of cell survival. Expression of the reactive oxygen species-controlling kinase Mirk/dyrk1B was increased severalfold by the mammalian target of rapamycin (mTOR) inhibitors RAD001, WYE354 and rapamycin, with less effect by the Akt inhibitors AZD5363 and MK-2206. Upregulation of Mirk messenger RNA (mRNA) expression was mediated by cyclic AMP response element binding protein (CREB) binding to two sites in the Mirk promoter upstream of the transcription start site and one site within exon 4. Depletion of CREB reduced Mirk expression, whereas depletion of mTOR increased it. Moreover, hydroxytamoxifen activation of an Akt-estrogen receptor construct blocked an increase in Mirk mRNA and protein. Addition of a Mirk/dyrk1B kinase inhibitor increased the sensitivity of Panc1 pancreatic cancer cells and three different ovarian cancer cell lines to the mTOR inhibitor RAD001. Targeting Mirk kinase could improve the utility of mTOR inhibitors and so presents an attractive drug target.


Genes involved in development and differentiation are commonly methylated in cancers derived from multiple organs: a single-institutional methylome analysis using 1007 tissue specimens.

  • Kentaro Ohara‎ et al.
  • Carcinogenesis‎
  • 2017‎

The aim of this study was to clarify the significance of DNA methylation alterations shared by cancers derived from multiple organs. We analyzed single-institutional methylome data by single-CpG-resolution Infinium assay for 1007 samples of non-cancerous tissue (N) and corresponding cancerous tissue (T) obtained from lung, stomach, kidney, breast and liver. Principal component analysis revealed that N samples of each organ showed distinct DNA methylation profiles, DNA methylation profiles of N samples of each organ being inherited by the corresponding T samples and DNA methylation profiles of T samples being more similar to those of N samples in the same organ than those of T samples in other organs. In contrast to such organ and/or carcinogenetic factor-specificity of DNA methylation profiles, when compared with the corresponding N samples, 231 genes commonly showed DNA hypermethylation in T samples in four or more organs. Gene ontology enrichment analysis showed that such commonly methylated genes were enriched among "transcriptional factors" participating in development and/or differentiation, which reportedly show bivalent histone modification in embryonic stem cells. Pyrosequencing and quantitative reverse transcription-PCR revealed an inverse correlation between DNA methylation levels and mRNA expression levels of representative commonly methylated genes, such as ALX1, ATP8A2, CR1 and EFCAB1, in tissue samples. These data suggest that disruption of the differentiated state of precancerous cells via alterations of expression, independent of differences in organs and/or carcinogenetic factors, may be a common feature of DNA methylation alterations during carcinogenesis in multiple organs.


Tumor promotion through the mesenchymal stem cell compartment in human hepatocellular carcinoma.

  • Pratika Y Hernanda‎ et al.
  • Carcinogenesis‎
  • 2013‎

Although the infiltration of mesenchymal stem (stromal) cells (MSCs) into different tumors is widely recognized in animal models, the question whether these MSCs have a positive or negative effect on disease progression remains unanswered. The aim of this study is to investigate whether human hepatocellular carcinoma (HCC) harbors MSCs and whether these MSCs affect tumor growth. We observed that cells capable of differentiation into both adipocyte and osteocyte lineages and expressing MSC markers can be cultured from surgically resected HCC tissues. In situ staining of human HCC tissues with a STRO-1 antibody showed that the tumor and tumor-stromal region are significantly enriched with candidate MSCs compared with adjacent tissue (n = 12, P < 0.01). In mice, coengraftment of a human HCC cell line (Huh7) with MSCs resulted in substantially larger tumors compared with paired engraftment of Huh7 alone (n = 8, P < 0.01). Consistently, coculturing Huh7 with irradiated MSCs significantly increased the number and the size of colonies formed. This enhancement of Huh7 colony formation was also observed by treatment of MSC-conditioned medium (MSC-CM), suggesting that secreted trophic factors contribute to the growth-promoting effects. Genome-wide gene expression array and pathway analysis confirmed the upregulation of cell growth and proliferation-related processes and downregulation of cell death-related pathways by treatment of MSC-CM in Huh7 cells. In conclusion, these results show that MSCs are enriched in human HCC tumor compartment and could exert trophic effects on tumor cells. Thus, targeting of HCC tumor MSCs may represent a new avenue for therapeutic intervention.


Flaxseed lignans enriched in secoisolariciresinol diglucoside prevent acute asbestos-induced peritoneal inflammation in mice.

  • Ralph A Pietrofesa‎ et al.
  • Carcinogenesis‎
  • 2016‎

Malignant mesothelioma (MM), linked to asbestos exposure, is a highly lethal form of thoracic cancer with a long latency period, high mortality and poor treatment options. Chronic inflammation and oxidative tissue damage caused by asbestos fibers are linked to MM development. Flaxseed lignans, enriched in secoisolariciresinol diglucoside (SDG), have antioxidant, anti-inflammatory and cancer chemopreventive properties. As a prelude to chronic chemoprevention studies for MM development, we tested the ability of flaxseed lignan component (FLC) to prevent acute asbestos-induced inflammation in MM-prone Nf2(+/mu) mice. Mice (n = 16-17 per group) were placed on control (CTL) or FLC-supplemented diets initiated 7 days prior to a single intraperitoneal bolus of 400 µg of crocidolite asbestos. Three days post asbestos exposure, mice were evaluated for abdominal inflammation, proinflammatory/profibrogenic cytokine release, WBC gene expression changes and oxidative and nitrosative stress in peritoneal lavage fluid (PLF). Asbestos-exposed mice fed CTL diet developed acute inflammation, with significant (P < 0.0001) elevations in WBCs and proinflammatory/profibrogenic cytokines (IL-1ß, IL-6, TNFα, HMGB1 and active TGFß1) relative to baseline (BL) levels. Alternatively, asbestos-exposed FLC-fed mice had a significant (P < 0.0001) decrease in PLF WBCs and proinflammatory/profibrogenic cytokine levels relative to CTL-fed mice. Importantly, PLF WBC gene expression of cytokines (IL-1ß, IL-6, TNFα, HMGB1 and TGFß1) and cytokine receptors (TNFαR1 and TGFßR1) were also downregulated by FLC. FLC also significantly (P < 0.0001) blunted asbestos-induced nitrosative and oxidative stress. FLC reduces acute asbestos-induced peritoneal inflammation, nitrosative and oxidative stress and may thus prove to be a promising agent in the chemoprevention of MM.


Annexin A2 is a discriminative serological candidate in early hepatocellular carcinoma.

  • Yulin Sun‎ et al.
  • Carcinogenesis‎
  • 2013‎

To date, the useful markers of hepatocellular carcinoma (HCC) remains incompletely developed. Here, we show that annexin A2 complement alpha-fetoprotein (AFP), a widely used liver cancer marker, in the serologically surveillance and early detection of HCC. First, differentially expressed proteins in HCC were identified using a subcellular proteomic approach. Annexin A2 was then selected for further verification. It was found to be overexpressed in HCC tissues (60.7%, 136/224). Using a self-established sandwich enzyme-linked immunosorbent assay, we found that annexin A2 significantly increased in the sera of HCC (n = 175, median, 24.75 ng/µl) compared with the healthy (n = 49, median, 16.69 ng/µl), benign tumors (n = 19, median, 19.92 ng/µl), hepatitis (n = 23, median, 6.48 ng/µl) and cirrhosis (n = 51, median, 7.39 ng/µl) controls and other malignant tumors (n = 87). Importantly, raised concentrations of annexin A2 were observed in 83.2% (79/95) of early stage (median, 24.32 ng/µl) and 78.4% (58/74) of AFP-negative (median, 24.09 ng/µl) patients. Annexin A2 alone had a better area under the receiver-operating characteristic curve (AUC = 0.79, 95% confidence interval: 0.73-0.85) in comparison with AFP (AUC = 0.73, 95% confidence interval: 0.66-0.80) in detecting of early stage HCC. Combining both markers notably improved the diagnostic efficiency of early HCC with an achieved sensitivity of 87.4%. Additionally, the expression characteristics of annexin A2 during hepatocarcinogenesis were detected in p21-HBx gene knockin transgenic mice model. The results showed that annexin A2 expression was substantially elevated in HCC-bearing mice, in accordance with the finding in human samples. In conclusion, annexin A2 may be an independent serological candidate for hepatitis B virus-related HCC, especially in the early stage cases with normal serum AFP.


MiR-138 induces cell cycle arrest by targeting cyclin D3 in hepatocellular carcinoma.

  • Wen Wang‎ et al.
  • Carcinogenesis‎
  • 2012‎

The deregulation of microRNA (miRNA) is frequently associated with a variety of cancers, including hepatocellular carcinoma (HCC). In this study, we identified 10 upregulated miRNAs (miR-217, miR-518b, miR-517c, miR-520g, miR-519a, miR-522, miR-518e, miR-525-3p, miR-512-3p and miR-518a-3p) and 10 downregulated miRNAs (miR-138, miR-214, miR-214#, miR-27a#, miR-199a-5p, miR-433, miR-511, miR-592, miR-483-5p and miR-483-3p) by Taqman miRNAs array and quantitative real-time PCR (qRT-PCR) confirmation. Additionally, we investigated the expression and possible role of miR-138 in HCC. qRT-PCR results showed that miR-138 was downregulated in 77.8%(14/18) of HCC tissues compared with adjacent non-tumor tissues. Overexpression of miR-138 reduced cell viability and colony formation by induction of cell arrest in HCC cell lines and inhibited tumor cell growth in xenograft nude mice. The use of miR-138 inhibitor increased cell viability and colony formation in HCC cell lines and tumor cell growth in xenograft nude mice. Using TargetScan predictions, CCND3 was defined as a potential direct target of miR-138. Furthermore, CCND3 protein expression was observed to be negatively correlated with miR-138 expression in HCC tissues. The dual-luciferase reporter gene assay results showed that CCND3 was a direct target of miR-138. The use of miR-138 mimic or inhibitor could decrease or increase CCND3 protein levels in HCC cell lines. We conclude that the frequently downregulated miR-138 can regulate CCND3 and function as a tumor suppressor in HCC. Therefore, miR-138 may serve as a useful therapeutic agent for miRNA-based HCC therapy.


PI3K/AKT pathway regulates phosphorylation of steroid receptors, hormone independence and tumor differentiation in breast cancer.

  • Marina Riggio‎ et al.
  • Carcinogenesis‎
  • 2012‎

Using a model of medroxyprogesterone acetate (MPA)-induced mouse mammary tumors that transit through different stages of hormone dependence, we previously reported that the activation of the phosphatidylinositol 3-kinase (PI3K)/AKT (protein kinase B) pathway is critical for the growth of hormone-independent (HI) mammary carcinomas but not for the growth of hormone-dependent (HD) mammary carcinomas. The objective of this work was to explore whether the activation of the PI3K/AKT pathway is responsible for the changes in tumor phenotype and for the transition to autonomous growth. We found that the inhibition of the PI3K/AKT/mTOR (mammalian target of rapamycin) pathway suppresses HI tumor growth. In addition, we were able to induce mammary tumors in mice in the absence of MPA by inoculating HD tumor cells expressing a constitutively active form of AKT1, myristoylated AKT1 (myrAKT1). These tumors were highly differentiated and displayed a ductal phenotype with laminin-1 and cytokeratin 8 expression patterns typical of HI tumors. Furthermore, myrAKT1 increased the tumor growth of IBH-6 and IBH-7 human breast cancer cell lines. In the estrogen-dependent IBH-7 cell line, myrAKT1 induced estrogen-independent growth accompanied by the expression of the adhesion markers focal adhesion kinase and E-cadherin. Finally, we found that cells expressing myrAKT1 exhibited increased phosphorylation of the progesterone receptor at Ser190 and Ser294 and of the estrogen receptor α at Ser118 and Ser167, independently of exogenous MPA or estrogen supply. Our results indicate that the activation of the PI3K/AKT/mTOR pathway promotes tissue architecture remodeling and the activation of steroid receptors.


As an independent unfavorable prognostic factor, IL-8 promotes metastasis of nasopharyngeal carcinoma through induction of epithelial-mesenchymal transition and activation of AKT signaling.

  • Xin-Jian Li‎ et al.
  • Carcinogenesis‎
  • 2012‎

Nasopharyngeal carcinoma (NPC) has the highest metastatic potential among head and neck cancers. Distant metastasis is the major cause of treatment failure. The role of interleukin-8 (IL-8) in NPC progression remains unknown. Our multivariate survival analyses of 255 patients with NPC revealed that higher IL-8 expression in primary NPC tissue was an independent prognostic factor for overall survival, disease-free survival, and distant metastasis-free survival of the patients. In vitro study revealed that IL-8 was highly expressed in the established high-metastasis NPC clone S18 relative to the low-metastasis cells. Suppression of IL-8 by short-hairpin RNA reduced the expression of IL-8 in S18 cells and subsequently inhibited migration, invasion, and hepatic metastasis of the cells without influencing cellular growth. Overexpression of IL-8 in S26 cells resulted in increased migration, invasion, and metastasis capabilities of the cells without affecting cellular growth. Exogenous IL-8 enhanced the migration and invasion of low-metastasis CNE-2 cells in a dose-dependent manner. An epithelial-mesenchymal transition (EMT) could be induced by IL-8 in various NPC cell lines. The high level of phosphorylated AKT in S18 cells could be suppressed by knocking down IL-8 expression. Further, IL-8-promoted migration and invasion could be abolished by either the application of the phosphoinositide-3-kinase inhibitor LY294002 or the knock down of AKT expression by using small-interfering RNA. In summary, IL-8 serves as an independent prognostic indicator of overall survival, disease-free survival, and metastasis-free survival for patients with NPC. IL-8 promotes NPC metastasis via autocrine and paracrine means, involving activation of AKT signaling and inducing EMT in NPC cells.


Activation of the mTOR pathway by low levels of xenoestrogens in breast epithelial cells from high-risk women.

  • William H Goodson‎ et al.
  • Carcinogenesis‎
  • 2011‎

Breast cancer is an estrogen-driven disease. Consequently, hormone replacement therapy correlates with disease incidence. However, increasing male breast cancer rates over the past three decades implicate additional sources of estrogenic exposure including wide spread estrogen-mimicking chemicals or xenoestrogens (XEs), such as bisphenol-A (BPA). By exposing renewable, human, high-risk donor breast epithelial cells (HRBECs) to BPA at concentrations that are detectable in human blood, placenta and milk, we previously identified gene expression profile changes associated with activation of mammalian target of rapamycin (mTOR) pathway genesets likely to trigger prosurvival changes in human breast cells. We now provide functional validation of mTOR activation using pairwise comparisons of 16 independent HRBEC samples with and without BPA exposure. We demonstrate induction of key genes and proteins in the PI3K-mTOR pathway--AKT1, RPS6 and 4EBP1 and a concurrent reduction in the tumor suppressor, phosphatase and tensin homolog gene protein. Altered regulation of mTOR pathway proteins in BPA-treated HRBECs led to marked resistance to rapamycin, the defining mTOR inhibitor. Moreover, HRBECs pretreated with BPA, or the XE, methylparaben (MP), surmounted antiestrogenic effects of tamoxifen showing dose-dependent apoptosis evasion and induction of cell cycling. Overall, XEs, when tested in benign breast cells from multiple human subjects, consistently initiated specific functional changes of the kind that are attributed to malignant onset in breast tissue. Our observations demonstrate the feasibility of studying renewable human samples as surrogates and reinforce the concern that BPA and MP, at low concentrations detected in humans, can have adverse health consequences.


Synthetic D-amino acid peptide inhibits tumor cell motility on laminin-5.

  • Thomas C Sroka‎ et al.
  • Carcinogenesis‎
  • 2006‎

Cell motility is partially dependent on interactions between the integrins and the extracellular matrix. Our previous studies have identified synthetic D-amino acid cell adhesion peptides using a combinatorial screening approach. In this study, we demonstrate that HYD1 (kikmviswkg) completely blocks random haptotactic migration and inhibits invasion of prostate carcinoma cells on laminin-5. This effect is adhesion independent and reversible. The inhibition of migration by HYD1 involves a dramatic remodeling of the actin cytoskeleton resulting in increased stress fiber formation and actin colocalization with cortactin at the cell membrane. HYD1 interacts with alpha6beta1 (not alpha6beta4) and alpha3beta1 integrins and surprisingly elevates laminin-5-dependent intracellular signals including focal adhesion kinase, mitogen-activated protein kinase kinase and extracellular signal-regulated kinase. HYD1 does not contain a previously characterized binding sequence for integrins. A scrambled derivative of HYD1, called HYDS (wiksmkivkg), does not interact with the alpha6 or alpha3 integrin subunits and is not biologically active. Taken together, these results indicate that HYD1 is a biologically active integrin-targeting peptide that reversibly inhibits tumor cell migration on laminin-5 and uncouples phosphotyrosine signaling from cytoskeletal-dependent migration.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: