Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 186 papers

Direct observation of chemokine receptors 5 on T-lymphocyte cell surfaces using fluorescent metal nanoprobes 2: Approximation of CCR5 populations.

  • Jian Zhang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2011‎

Metal nanoparticle probes were used as molecular imaging agents to detect the expression levels and spatial distributions of the CCR5 receptors on the cell surfaces. Alexa Fluor 647-labeled anti-CCR5 monoclonal antibodies (mAbs) were covalently bound to 20 nm silver nanoparticles to synthesize the mAb-metal complexes. We measured the single nanoparticle emission of the mAb-metal complexes, showing that the complexes displayed enhanced intensities and reduced lifetimes in comparison with the metal-free mAbs. Six HeLa cell lines with various CCR5 expressions were incubated with the mAb-metal complexes for the target-specific binding to the cell surfaces. Fluorescence cell images were recorded on a time-resolved confocal microscope. The collected images expressed clear CCR5 expression-dependent optical properties. Two regression curves were obtained on the basis of the emission intensity and lifetime over the entire cell images against the number of the CCR5 expression on the cells. The emission from the single mAb-metal complexes could be distinctly identified from the cellular autofluorescence on the cell images. The CCR5 spatial distributions on the cells were analyzed on the cell images and showed that the low-expression cells have the CCR5 receptors as individuals or small clusters but the high expression cells have them as the dense and discrete clusters on the cell surfaces.


miR-135 family members mediate podocyte injury through the activation of Wnt/β-catenin signaling.

  • Xianggui Yang‎ et al.
  • International journal of molecular medicine‎
  • 2015‎

The upregulation of Wnt/β-catenin signaling occurs in virtually all types of kidney disease and is associated with podocyte injury. However, the precise mechanisms involved in the development of kidney disease remain to be elucidated. MicroRNAs (miRNAs or miRs) are a class of short non-coding RNAs and they have been shown to be regulators of gene expression, mainly by binding to the untranslated region (UTR) of mRNAs. The aim of the present study was to determine the role of the 2 members of the miR-135 family (miR‑135a and miR‑135b) in podocyte injury and to elucidate the mechanisms responsible for the damage to podocytes. The results revealed that miR-135a and miR-135b were upregulated in models of podocyte injury and in glomeruli isolated from patients with focal segmental glomerulosclerosis (FSGS). The ectopic expression of miR-135a and miR‑135b led to severe podocyte injury and the disorder of the podocyte cytoskeleton. Our findings demonstrated that miR-135a and miR‑135b activated Wnt/β‑catenin signaling and induced the nuclear translocation of β-catenin. Using luciferase reporter assays, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis, glycogen synthase kinase 3β (GSK3β) was identified as a target gene of miR-135a and miR‑135b. To the best of our knowledge, this is the first study to demonstrate that members of the miR-135 family (specifically miR-135a and miR‑135b) regulate the expression of GSK3β, thus playing a role in the development of podocyte injury and the disorder of the podocyte cytoskeleton. This is an important finding as it may contribute to the development of novel therapeutics for podocyte injury-associated glomerulopathies.


Anti-inflammatory effects of recombinant human PDCD5 (rhPDCD5) in a rat collagen-induced model of arthritis.

  • Juan Xiao‎ et al.
  • Inflammation‎
  • 2015‎

Programmed cell death 5 (PDCD5) was first identified as a gene upregulated in cells undergoing apoptosis. We recently demonstrated the inhibitory effect of PDCD5 on experimentally induced autoimmune encephalomyelitis. In this study, we investigated the anti-inflammatory effects of recombinant human PDCD5 (rhPDCD5) in a rat collagen-induced arthritis (CIA) model. We find that vaccination of collagen II (CII) induced CIA rats with rhPDCD5 significantly delayed the occurrence and reduced the severity of CIA rats. rhPDCD5 also restored the loss of Foxp3(+) regulatory T (Treg) cells and decreased the population of Th1 and Th17 in CIA rats. Simultaneously, rhPDCD5 treatment suppressed the production of pro-inflammatory cytokines (interleukin (IL)-6, IL-17A, tumor necrosis factor-α (TNF-α), and interferon gamma (IFN-γ)) and increased the secretion of anti-inflammatory cytokines (transforming growth factor beta 1 (TGF-β1) and IL-10) in CIA rats. In addition, rhPDCD5 inhibited the ability of CII to induce proliferation of splenocytes and lymph node cells (LNCs) and promoted the CII-activated CD4(+) cell apoptosis. These results of rhPDCD5-treated CIA rats were similar with those of recombinant human TNF-α receptor IgG Fc (rhTNFR:Fc). Thus, to our knowledge, we provide the first evidence that rhPDCD5 may be an efficient approach to diminishing exacerbated immune responses in CIA, indicating its therapeutic potential in the treatment of rheumatoid arthritis and other autoimmune diseases.


HIV-1 Protease in the Fission Yeast Schizosaccharomyces pombe.

  • Zsigmond Benko‎ et al.
  • PloS one‎
  • 2016‎

HIV-1 protease (PR) is an essential viral enzyme. Its primary function is to proteolyze the viral Gag-Pol polyprotein for production of viral enzymes and structural proteins and for maturation of infectious viral particles. Increasing evidence suggests that PR cleaves host cellular proteins. However, the nature of PR-host cellular protein interactions is elusive. This study aimed to develop a fission yeast (Schizosaccharomyces pombe) model system and to examine the possible interaction of HIV-1 PR with cellular proteins and its potential impact on cell proliferation and viability.


Epidemiology Characteristics, Methodological Assessment and Reporting of Statistical Analysis of Network Meta-Analyses in the Field of Cancer.

  • Long Ge‎ et al.
  • Scientific reports‎
  • 2016‎

Because of the methodological complexity of network meta-analyses (NMAs), NMAs may be more vulnerable to methodological risks than conventional pair-wise meta-analysis. Our study aims to investigate epidemiology characteristics, conduction of literature search, methodological quality and reporting of statistical analysis process in the field of cancer based on PRISMA extension statement and modified AMSTAR checklist. We identified and included 102 NMAs in the field of cancer. 61 NMAs were conducted using a Bayesian framework. Of them, more than half of NMAs did not report assessment of convergence (60.66%). Inconsistency was assessed in 27.87% of NMAs. Assessment of heterogeneity in traditional meta-analyses was more common (42.62%) than in NMAs (6.56%). Most of NMAs did not report assessment of similarity (86.89%) and did not used GRADE tool to assess quality of evidence (95.08%). 43 NMAs were adjusted indirect comparisons, the methods used were described in 53.49% NMAs. Only 4.65% NMAs described the details of handling of multi group trials and 6.98% described the methods of similarity assessment. The median total AMSTAR-score was 8.00 (IQR: 6.00-8.25). Methodological quality and reporting of statistical analysis did not substantially differ by selected general characteristics. Overall, the quality of NMAs in the field of cancer was generally acceptable.


A Luminex assay detects amyloid β oligomers in Alzheimer's disease cerebrospinal fluid.

  • Adrianna Z Herskovits‎ et al.
  • PloS one‎
  • 2013‎

Amyloid beta (aβ) protein assembles into larger protein aggregates during the pathogenesis of Alzheimer's disease (AD) and there is increasing evidence that soluble aβ oligomers are a critical pathologic species. Diagnostic evaluations rely on the measurement of increased tau and decreased aβ42 in the cerebrospinal fluid (CSF) from AD patients and evidence for oligomeric aβ in patient CSF is conflicting. In this study, we have adapted a monoclonal single antibody sandwich ELISA assay to a Luminex platform and found that this assay can detect oligomerized aβ42 and sAPPα fragments. We evaluated oligomeric aβ reactivity in 20 patients with AD relative to 19 age matched controls and compared these values with a commercially available Alzbio3 kit that detects tau, phosphorylated tau and aβ42 on the same diagnostic platform. We found that CSF samples of patients with AD had elevated aβ oligomers compared to control subjects (p < 0.05) and the ratio of aβ oligomers to aβ42 was also significantly elevated (p < 0.0001). Further research to develop high sensitivity analytical platforms and rigorous methods of developing stable assay standards will be needed before the analysis of oligomeric aβ becomes a routine diagnostic assay for the evaluation of late onset AD patients.


Heterochromatin protein 1 promotes self-renewal and triggers regenerative proliferation in adult stem cells.

  • An Zeng‎ et al.
  • The Journal of cell biology‎
  • 2013‎

Adult stem cells (ASCs) capable of self-renewal and differentiation confer the potential of tissues to regenerate damaged parts. Epigenetic regulation is essential for driving cell fate decisions by rapidly and reversibly modulating gene expression programs. However, it remains unclear how epigenetic factors elicit ASC-driven regeneration. In this paper, we report that an RNA interference screen against 205 chromatin regulators identified 12 proteins essential for ASC function and regeneration in planarians. Surprisingly, the HP1-like protein SMED-HP1-1 (HP1-1) specifically marked self-renewing, pluripotent ASCs, and HP1-1 depletion abrogated self-renewal and promoted differentiation. Upon injury, HP1-1 expression increased and elicited increased ASC expression of Mcm5 through functional association with the FACT (facilitates chromatin transcription) complex, which consequently triggered proliferation of ASCs and initiated blastema formation. Our observations uncover an epigenetic network underlying ASC regulation in planarians and reveal that an HP1 protein is a key chromatin factor controlling stem cell function. These results provide important insights into how epigenetic mechanisms orchestrate stem cell responses during tissue regeneration.


Transmembrane protein 208: a novel ER-localized protein that regulates autophagy and ER stress.

  • Yuanbo Zhao‎ et al.
  • PloS one‎
  • 2013‎

Autophagy and endoplasmic reticulum (ER) stress are both tightly regulated cellular processes that play central roles in various physiological and pathological conditions. Recent reports have indicated that ER stress is a potent inducer of autophagy. However, little is known about the underlying molecular link between the two processes. Here we report a novel human protein, transmembrane protein 208 (TMEM208) that can regulate both autophagy and ER stress. When overexpressed, TMEM208 impaired autophagy as characterized by the decrease of the accumulation of LC3-II, decreased degradation of autophagic substrates, and reduced expression of critical effectors and vital molecules of the ER stress and autophagy processes. In contrast, knockdown of the TMEM208 gene promoted autophagy, as demonstrated by the increase of LC3-II, increased degradation of autophagic substrates, and enhanced expression levels for genes key in the ER stress and autophagic processes. Taken together, our results reveal that this novel ER-located protein regulates both ER stress and autophagy, and represents a possible link between the two different cellular processes.


Cholera Toxin B Subunit Shows Transneuronal Tracing after Injection in an Injured Sciatic Nerve.

  • Bi-Qin Lai‎ et al.
  • PloS one‎
  • 2015‎

Cholera toxin B subunit (CTB) has been extensively used in the past for monosynaptic mapping. For decades, it was thought to lack the ability of transneuronal tracing. In order to investigate whether biotin conjugates of CTB (b-CTB) would pass through transneurons in the rat spinal cord, it was injected into the crushed left sciatic nerve. For experimental control, the first order afferent neuronal projections were defined by retrograde transport of fluorogold (FG, a non-transneuronal labeling marker as an experimental control) injected into the crushed right sciatic nerve in the same rat. Neurons containing b-CTB or FG were observed in the dorsal root ganglia (DRG) at the L4-L6 levels ipsilateral to the tracer injection. In the spinal cord, b-CTB labeled neurons were distributed in all laminae ipsilaterally between C7 and S1 segments, but labeling of neurons at the cervical segment was abolished when the T10 segment was transected completely. The interneurons, distributed in the intermediate gray matter and identified as gamma-aminobutyric acid-ergic (GABAergic), were labeled by b-CTB. In contrast, FG labeling was confined to the ventral horn neurons at L4-L6 spinal segments ipsilateral to the injection. b-CTB immunoreactivity remained to be restricted to the soma of neurons and often appeared as irregular patches detected by light and electron microscopy. Detection of monosialoganglioside (GM1) in b-CTB labeled neurons suggests that GM1 ganglioside may specifically enhance the uptake and transneuronal passage of b-CTB, thus supporting the notion that it may be used as a novel transneuronal tracer.


Molecular characterization of HIV-1 genome in fission yeast Schizosaccharomyces pombe.

  • Joseph Nkeze‎ et al.
  • Cell & bioscience‎
  • 2015‎

The human immunodeficiency virus type 1 (HIV-1) genome (~9 kb RNA) is flanked by two long terminal repeats (LTR) promoter regions with nine open reading frames, which encode Gag, Pol and Env polyproteins, four accessory proteins (Vpu, Vif, Vpr, Nef) and two regulatory proteins (Rev, Tat). In this study, we carried out a genome-wide and functional analysis of the HIV-1 genome in fission yeast (Schizosaccharomyces pombe).


Fluorescent metal nanoshell and CK19 detection on single cell image.

  • Jian Zhang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2011‎

In this article, we report the synthesis strategy and optical properties of a novel type of fluorescence metal nanoshell when it was used as imaging agent for fluorescence cell imaging. The metal nanoshells were made with 40 nm silica cores and 10nm silver shells. Unlike typical fluorescence metal nanoshells which contain the organic dyes in the cores, novel metal nanoshells were composed of Cy5-labelled monoclonal anti-CK19 antibodies (mAbs) on the external surfaces of shells. Optical measurements to the single nanoparticles showed that in comparison with the metal free labelled mAbs, the mAb-Ag complexes displayed significantly enhanced emission intensity and dramatically shortened lifetime due to near-field interactions of fluorophores with metal. These metal nanoshells were found to be able to immunoreact with target cytokeratin 19 (CK19) molecules on the surfaces of LNCAP and HeLa cells. Fluorescence cell images were recorded on a time-resolved confocal microscope. The emissions from the metal nanoprobes could be clearly isolated from the cellular autofluorescence backgrounds on the cell images as either individuals or small clusters due to their stronger emission intensities and shorter lifetimes. These emission signals could also be precisely counted on single cell images. The count number may provide an approach for quantifying the target molecules in the cells.


The ageing systemic milieu negatively regulates neurogenesis and cognitive function.

  • Saul A Villeda‎ et al.
  • Nature‎
  • 2011‎

In the central nervous system, ageing results in a precipitous decline in adult neural stem/progenitor cells and neurogenesis, with concomitant impairments in cognitive functions. Interestingly, such impairments can be ameliorated through systemic perturbations such as exercise. Here, using heterochronic parabiosis we show that blood-borne factors present in the systemic milieu can inhibit or promote adult neurogenesis in an age-dependent fashion in mice. Accordingly, exposing a young mouse to an old systemic environment or to plasma from old mice decreased synaptic plasticity, and impaired contextual fear conditioning and spatial learning and memory. We identify chemokines--including CCL11 (also known as eotaxin)--the plasma levels of which correlate with reduced neurogenesis in heterochronic parabionts and aged mice, and the levels of which are increased in the plasma and cerebrospinal fluid of healthy ageing humans. Lastly, increasing peripheral CCL11 chemokine levels in vivo in young mice decreased adult neurogenesis and impaired learning and memory. Together our data indicate that the decline in neurogenesis and cognitive impairments observed during ageing can be in part attributed to changes in blood-borne factors.


The Roles of prM-E Proteins in Historical and Epidemic Zika Virus-mediated Infection and Neurocytotoxicity.

  • Ge Li‎ et al.
  • Viruses‎
  • 2019‎

The Zika virus (ZIKV) was first isolated in Africa in 1947. It was shown to be a mild virus that had limited threat to humans. However, the resurgence of the ZIKV in the most recent Brazil outbreak surprised us because it causes severe human congenital and neurologic disorders including microcephaly in newborns and Guillain-Barré syndrome in adults. Studies showed that the epidemic ZIKV strains are phenotypically different from the historic strains, suggesting that the epidemic ZIKV has acquired mutations associated with the altered viral pathogenicity. However, what genetic changes are responsible for the changed viral pathogenicity remains largely unknown. One of our early studies suggested that the ZIKV structural proteins contribute in part to the observed virologic differences. The objectives of this study were to compare the historic African MR766 ZIKV strain with two epidemic Brazilian strains (BR15 and ICD) for their abilities to initiate viral infection and to confer neurocytopathic effects in the human brain's SNB-19 glial cells, and further to determine which part of the ZIKV structural proteins are responsible for the observed differences. Our results show that the historic African (MR766) and epidemic Brazilian (BR15 and ICD) ZIKV strains are different in viral attachment to host neuronal cells, viral permissiveness and replication, as well as in the induction of cytopathic effects. The analysis of chimeric viruses, generated between the MR766 and BR15 molecular clones, suggests that the ZIKV E protein correlates with the viral attachment, and the C-prM region contributes to the permissiveness and ZIKV-induced cytopathic effects. The expression of adenoviruses, expressing prM and its processed protein products, shows that the prM protein and its cleaved Pr product, but not the mature M protein, induces apoptotic cell death in the SNB-19 cells. We found that the Pr region, which resides on the N-terminal side of prM protein, is responsible for prM-induced apoptotic cell death. Mutational analysis further identified four amino-acid residues that have an impact on the ability of prM to induce apoptosis. Together, the results of this study show that the difference of ZIKV-mediated viral pathogenicity, between the historic and epidemic strains, contributed in part the functions of the structural prM-E proteins.


Mutations that prevent methylation of cohesin render sensitivity to DNA damage in S. pombe.

  • Swastika Sanyal‎ et al.
  • Journal of cell science‎
  • 2018‎

The canonical role of cohesin is to mediate sister chromatid cohesion. In addition, cohesin plays important roles in processes such as DNA repair and regulation of gene expression. Mounting evidence suggests that various post-translational modifications, including phosphorylation, acetylation and sumoylation regulate cohesin functions. Our mass spectrometry analysis of cohesin purified from Schizosaccharomyces pombe cells revealed that the cohesin subunit Psm1 is methylated on two evolutionarily conserved lysine residues, K536 and K1200. We found that mutations that prevent methylation of Psm1 K536 and K1200 render sensitivity to DNA-damaging agents and show positive genetic interactions with mutations in genes encoding the Mus81-Eme1 endonuclease. Yeast two-hybrid and co-immunoprecipitation assays showed that there were interactions between subunits of the cohesin and Mus81-Eme1 complexes. We conclude that cohesin is methylated and that mutations that prevent methylation of Psm1 K536 and K1200 show synthetic phenotypes with mutants defective in the homologous recombination DNA repair pathway.


Stigmasterol prevents glucolipotoxicity induced defects in glucose-stimulated insulin secretion.

  • Meliza G Ward‎ et al.
  • Scientific reports‎
  • 2017‎

Type 2 diabetes results from defects in both insulin sensitivity and insulin secretion. Elevated cholesterol content within pancreatic β-cells has been shown to reduce β-cell function and increase β-cell apoptosis. Hyperglycemia and dyslipidemia contribute to glucolipotoxicity that leads to type 2 diabetes. Here we examined the capacity of glucolipotoxicity to induce free cholesterol accumulation in human pancreatic islets and the INS-1 insulinoma cell line. Glucolipotoxicity treatment increased free cholesterol in β-cells, which was accompanied by increased reactive oxygen species (ROS) production and decreased insulin secretion. Addition of AAPH, a free radical generator, was able to increase filipin staining indicating a link between ROS production and increased cholesterol in β-cells. We also showed the ability of stigmasterol, a common food-derived phytosterol with anti-atherosclerotic potential, to prevent the increase in both free cholesterol and ROS levels induced by glucolipotoxicity in INS-1 cells. Stigmasterol addition also inhibited early apoptosis, increased total insulin, promoted actin reorganization, and improved insulin secretion in cells exposed to glucolipotoxicity. Overall, these data indicate cholesterol accumulation as an underlying mechanism for glucolipotoxicity-induced defects in insulin secretion and stigmasterol treatment as a potential strategy to protect β-cell function during diabetes progression.


ZFAS1 functions as an oncogenic long non-coding RNA in bladder cancer.

  • Haifan Yang‎ et al.
  • Bioscience reports‎
  • 2018‎

Long non-coding RNA (lncRNA) ZFAS1 (zinc finger antisense 1) has been suggested to have an oncogenic role in the tumorigenesis of human malignant tumors. However, the expression status and biological function of ZFAS1 in bladder cancer is still unknown. Thus, the purpose of the present study is to explore the clinical value of ZFAS1 in bladder cancer patients, and the biological function of ZFAS1 in bladder cancer cell. In the present study, we found ZFAS1 expression was increased in bladder cancer tissues compared with paired adjacent normal tissues through analyzing the Cancer Genome Atlas (TCGA) database. Furthermore, we confirmed that levels of ZFAS1 expression were elevated in bladder cancer tissues and cell lines compared with normal bladder tissues and normal uroepithelium cell line, respectively. Then, we observed that the expression level of ZFAS1 was positively associated with clinical stag, muscularis invasion, lymph node metastasis, and distant metastasis in bladder cancer patients. The experiments in vitro suggested that knockdown of ZFAS1 repressed bladder cancer cell proliferation via up-regulating KLF2 and NKD2 expression, and inhibited cell migration and invasion via down-regulating ZEB1 and ZEB2 expression. In conclusion, ZFAS1 is overexpressed in bladder cancer, and functions as an oncogenic lncRNA in regulating bladder cancer cell proliferation, migration, and invasion.


Decellularization optimizes the inhibitory microenvironment of the optic nerve to support neurite growth.

  • Jia-Hui Sun‎ et al.
  • Biomaterials‎
  • 2020‎

Allogeneic or homologous tissue transplantation is an effective strategy to repair tissue injury. However, the central nervous tissues like the brain, spinal cord, and optic nerve are not ideal materials for nervous tissue regeneration due to the excessive axonal inhibitor cues in their microenvironments. In the present study, we found that decellularization optimizes the function of the adult optic nerve in supporting the oriented outgrowth of dorsal root ganglion (DRG) neurites. The neurites growing on the decellularized optic nerve (DON) showed longer extension distances than those growing on the normal optic nerve (ON). Neurite branching was also significantly increased on the DON compared to on the ON. Decellularization selectively removed some axon-inhibitory molecules such as myelin-associated glycoprotein (basically not detected in DON) and chondroitin sulfate proteoglycans (detected in DON at a level less than 0.3 fold that in ON) and preserved some axon-promoted extracellular matrix (ECM) proteins, including collagen IV and laminin (detected at levels 6.0-fold higher in DON than in ON). Furthermore, collagen IV and laminin were shown to be preserved in DON, and their binding activities with integrin α1 were retained to promote the extension of DRG neurites. Together, the findings provide a feasible way to optimize the axon-inhibited microenvironment of central nervous tissues and establish a theoretical basis for the application of DON scaffolds in repairing central nervous injury.


Repression of a large number of genes requires interplay between homologous recombination and HIRA.

  • Ivana Misova‎ et al.
  • Nucleic acids research‎
  • 2021‎

During homologous recombination, Dbl2 protein is required for localisation of Fbh1, an F-box helicase that efficiently dismantles Rad51-DNA filaments. RNA-seq analysis of dbl2Δ transcriptome showed that the dbl2 deletion results in upregulation of more than 500 loci in Schizosaccharomyces pombe. Compared with the loci with no change in expression, the misregulated loci in dbl2Δ are closer to long terminal and long tandem repeats. Furthermore, the misregulated loci overlap with antisense transcripts, retrotransposons, meiotic genes and genes located in subtelomeric regions. A comparison of the expression profiles revealed that Dbl2 represses the same type of genes as the HIRA histone chaperone complex. Although dbl2 deletion does not alleviate centromeric or telomeric silencing, it suppresses the silencing defect at the outer centromere caused by deletion of hip1 and slm9 genes encoding subunits of the HIRA complex. Moreover, our analyses revealed that cells lacking dbl2 show a slight increase of nucleosomes at transcription start sites and increased levels of methylated histone H3 (H3K9me2) at centromeres, subtelomeres, rDNA regions and long terminal repeats. Finally, we show that other proteins involved in homologous recombination, such as Fbh1, Rad51, Mus81 and Rad54, participate in the same gene repression pathway.


Comparative analysis of visit and home blood pressure in a pilot trial on the effect of 18% sodium substitute salt on blood pressure.

  • Ting Liu‎ et al.
  • Scientific reports‎
  • 2021‎

Aim to compare the home blood pressure monitoring (HBPM) and visit blood pressure monitoring in a clinical phase I single-arm pilot trial. The 18% sodium substitute salt was used in 43 hypertensives for 8 weeks, and visited once a week, while weekly visit blood (VBP) pressure, daily home blood pressure (HBP) and urine test results before and after intervention were collected. 43 hypertensive patients were recruited, 4 were lost. And enrolled 39 patients for analysis. The VBP were lower than morning HBP and night HBP (P < 0.05). And VBP was good correlated with morning BP (SBP: r = 0.692, P < 0.001, DBP: r = 0.789, P < 0.001) and night BP (SBP: r = 0.571, P < 0.001, DBP: r = 0.738, P < 0.001). The results of mixed linear model analysis showed that patients' visit SBP (- 11.4 mmHg, 95% CI: - 17.0 to - 5.7, P < 0.001), morning home SBP (- 10.0 mmHg, 95% CI: - 16.4 to - 3.6, P = 0.003) and night home SBP (- 10.2 mmHg, 95% CI: - 15.8 to - 4.6, P = 0.001) decreased significantly, after intervention. Both HBP and VBP showed that 18% substitute salt intervention could decrease the blood pressure of hypertensives. Medication led to VBP lower than HBP, but the two still had a good correlation.Trial registration: NCT03226327. Registered 21 July 2017-Retrospectively registered, http://www.clinicaltrials.gov .


Reasonable permutation of M2e enhances the effect of universal influenza nanovaccine.

  • Peiyang Ding‎ et al.
  • International journal of biological macromolecules‎
  • 2021‎

Influenza A virus (IAV) occasionally cross-species transmission among humans, swine and avian. The ectodomain of matrix protein 2 (M2e) is highly conserved in IAV, and multi-copy M2e from different species are usually displayed on the surface of nanoparticles to improve immunogenicity and constitute universal IAV nanovaccines. In our previous study, three M2e were inserted into the C-terminal of Cap protein of porcine circovirus type 2 (PCV2) to form a universal nanovaccine that provides protection against PCV2 and different subtypes of IAV. However, M2e adopts at least two converted conformations, and the intermolecular linker of M2e enhances the conformational instability, which limits the recognition by B cell receptors and production of high-level antibodies. Here, we report that the permutation of M2e affects effectiveness of nanovaccines. Three M2e derived from humans, swine and avian IAV were inserted into the C-terminal of Cap protein to form nanovaccines. Immunoprotective effects of different M2e arrangements were explored in mice. Results showed that the M2e closest to the surface of nanoparticle induced the most efficient protection against IAV derived from corresponding species. The results will contribute to develop more effective PCV2 and universal IAV bivalent nanovaccines for pigs, as well as species-specific universal IAV vaccines.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: