Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 49 papers

Large genomic rearrangements of BRCA1 and BRCA2 among patients referred for genetic analysis in Galicia (NW Spain): delimitation and mechanism of three novel BRCA1 rearrangements.

  • Laura Fachal‎ et al.
  • PloS one‎
  • 2014‎

In the Iberian Peninsula, which includes mainly Spain and Portugal, large genomic rearrangements (LGRs) of BRCA1 and BRCA2 have respectively been found in up to 2.33% and 8.4% of families with hereditary breast and/or ovarian cancer (HBOC) that lack point mutations and small indels. In Galicia (Northwest Spain), the spectrum and frequency of BRCA1/BRCA2 point mutations differs from the rest of the Iberian populations. However, to date there are no Galician frequency reports of BRCA1/BRCA2 LGRs. Here we used multiplex ligation-dependent probe amplification (MLPA) to screen 651 Galician index cases (out of the 830 individuals referred for genetic analysis) without point mutations or small indels. We identified three different BRCA1 LGRs in four families. Two of them have been previously classified as pathogenic LGRs: the complete deletion of BRCA1 (identified in two unrelated families) and the deletion of exons 1 to 13. We also identified the duplication of exons 1 and 2 that is a LGR with unknown pathogenicity. Determination of the breakpoints of the BRCA1 LGRs using CNV/SNP arrays and sequencing identified them as NG_005905.2:g.70536_180359del, NG_005905.2:g.90012_97270dup, and NC_000017.10:g.41230935_41399840delinsAluSx1, respectively; previous observations of BRCA1 exon1-24del, exon1-2dup, and exon1-13del LGRs have not characterized them in such detail. All the BRCA1 LGRs arose from unequal homologous recombination events involving Alu elements. We also detected, by sequencing, one BRCA2 LGR, the Portuguese founder mutation c.156_157insAluYa5. The low frequency of BRCA1 LGRs within BRCA1 mutation carriers in Galicia (2.34%, 95% CI: 0.61-7.22) seems to differ from the Spanish population (9.93%, 95% CI: 6.76-14.27, P-value = 0.013) and from the rest of the Iberian population (9.76%, 95% CI: 6.69-13.94, P-value = 0.014).


Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas.

  • Claire Palles‎ et al.
  • Nature genetics‎
  • 2013‎

Many individuals with multiple or large colorectal adenomas or early-onset colorectal cancer (CRC) have no detectable germline mutations in the known cancer predisposition genes. Using whole-genome sequencing, supplemented by linkage and association analysis, we identified specific heterozygous POLE or POLD1 germline variants in several multiple-adenoma and/or CRC cases but in no controls. The variants associated with susceptibility, POLE p.Leu424Val and POLD1 p.Ser478Asn, have high penetrance, and POLD1 mutation was also associated with endometrial cancer predisposition. The mutations map to equivalent sites in the proofreading (exonuclease) domain of DNA polymerases ɛ and δ and are predicted to cause a defect in the correction of mispaired bases inserted during DNA replication. In agreement with this prediction, the tumors from mutation carriers were microsatellite stable but tended to acquire base substitution mutations, as confirmed by yeast functional assays. Further analysis of published data showed that the recently described group of hypermutant, microsatellite-stable CRCs is likely to be caused by somatic POLE mutations affecting the exonuclease domain.


Targeted RNA-seq successfully identifies normal and pathogenic splicing events in breast/ovarian cancer susceptibility and Lynch syndrome genes.

  • Rita D Brandão‎ et al.
  • International journal of cancer‎
  • 2019‎

A subset of genetic variants found through screening of patients with hereditary breast and ovarian cancer syndrome (HBOC) and Lynch syndrome impact RNA splicing. Through target enrichment of the transcriptome, it is possible to perform deep-sequencing and to identify the different and even rare mRNA isoforms. A targeted RNA-seq approach was used to analyse the naturally-occurring splicing events for a panel of 8 breast and/or ovarian cancer susceptibility genes (BRCA1, BRCA2, RAD51C, RAD51D, PTEN, STK11, CDH1, TP53), 3 Lynch syndrome genes (MLH1, MSH2, MSH6) and the fanconi anaemia SLX4 gene, in which monoallelic mutations were found in non-BRCA families. For BRCA1, BRCA2, RAD51C and RAD51D the results were validated by capillary electrophoresis and were compared to a non-targeted RNA-seq approach. We also compared splicing events from lymphoblastoid cell-lines with those from breast and ovarian fimbriae tissues. The potential of targeted RNA-seq to detect pathogenic changes in RNA-splicing was validated by the inclusion of samples with previously well characterized BRCA1/2 genetic variants. In our study, we update the catalogue of normal splicing events for BRCA1/2, provide an extensive catalogue of normal RAD51C and RAD51D alternative splicing, and list splicing events found for eight other genes. Additionally, we show that our approach allowed the identification of aberrant splicing events due to the presence of BRCA1/2 genetic variants and distinguished between complete and partial splicing events. In conclusion, targeted-RNA-seq can be very useful to classify variants based on their putative pathogenic impact on splicing.


Germline variation at 8q24 and prostate cancer risk in men of European ancestry.

  • Marco Matejcic‎ et al.
  • Nature communications‎
  • 2018‎

Chromosome 8q24 is a susceptibility locus for multiple cancers, including prostate cancer. Here we combine genetic data across the 8q24 susceptibility region from 71,535 prostate cancer cases and 52,935 controls of European ancestry to define the overall contribution of germline variation at 8q24 to prostate cancer risk. We identify 12 independent risk signals for prostate cancer (p < 4.28 × 10-15), including three risk variants that have yet to be reported. From a polygenic risk score (PRS) model, derived to assess the cumulative effect of risk variants at 8q24, men in the top 1% of the PRS have a 4-fold (95%CI = 3.62-4.40) greater risk compared to the population average. These 12 variants account for ~25% of what can be currently explained of the familial risk of prostate cancer by known genetic risk factors. These findings highlight the overwhelming contribution of germline variation at 8q24 on prostate cancer risk which has implications for population risk stratification.


The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer.

  • Gisella Figlioli‎ et al.
  • NPJ breast cancer‎
  • 2019‎

Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM -/- patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors.


External Validation of a Predictive Model for Acute Skin Radiation Toxicity in the REQUITE Breast Cohort.

  • Tim Rattay‎ et al.
  • Frontiers in oncology‎
  • 2020‎

Background: Acute skin toxicity is a common and usually transient side-effect of breast radiotherapy although, if sufficiently severe, it can affect breast cosmesis, aftercare costs and the patient's quality-of-life. The aim of this study was to develop predictive models for acute skin toxicity using published risk factors and externally validate the models in patients recruited into the prospective multi-center REQUITE (validating pREdictive models and biomarkers of radiotherapy toxicity to reduce side-effects and improve QUalITy of lifE in cancer survivors) study. Methods: Patient and treatment-related risk factors significantly associated with acute breast radiation toxicity on multivariate analysis were identified in the literature. These predictors were used to develop risk models for acute erythema and acute desquamation (skin loss) in three Radiogenomics Consortium cohorts of patients treated by breast-conserving surgery and whole breast external beam radiotherapy (n = 2,031). The models were externally validated in the REQUITE breast cancer cohort (n = 2,057). Results: The final risk model for acute erythema included BMI, breast size, hypo-fractionation, boost, tamoxifen use and smoking status. This model was validated in REQUITE with moderate discrimination (AUC 0.65), calibration and agreement between predicted and observed toxicity (Brier score 0.17). The risk model for acute desquamation, excluding the predictor tamoxifen use, failed to validate in the REQUITE cohort. Conclusions: While most published prediction research in the field has focused on model development, this study reports successful external validation of a predictive model using clinical risk factors for acute erythema following radiotherapy after breast-conserving surgery. This model retained discriminatory power but will benefit from further re-calibration. A similar model to predict acute desquamation failed to validate in the REQUITE cohort. Future improvements and more accurate predictions are expected through the addition of genetic markers and application of other modeling and machine learning techniques.


The CHEK2 Variant C.349A>G Is Associated with Prostate Cancer Risk and Carriers Share a Common Ancestor.

  • Andreia Brandão‎ et al.
  • Cancers‎
  • 2020‎

The identification of recurrent founder variants in cancer predisposing genes may have important implications for implementing cost-effective targeted genetic screening strategies. In this study, we evaluated the prevalence and relative risk of the CHEK2 recurrent variant c.349A>G in a series of 462 Portuguese patients with early-onset and/or familial/hereditary prostate cancer (PrCa), as well as in the large multicentre PRACTICAL case-control study comprising 55,162 prostate cancer cases and 36,147 controls. Additionally, we investigated the potential shared ancestry of the carriers by performing identity-by-descent, haplotype and age estimation analyses using high-density SNP data from 70 variant carriers belonging to 11 different populations included in the PRACTICAL consortium. The CHEK2 missense variant c.349A>G was found significantly associated with an increased risk for PrCa (OR 1.9; 95% CI: 1.1-3.2). A shared haplotype flanking the variant in all carriers was identified, strongly suggesting a common founder of European origin. Additionally, using two independent statistical algorithms, implemented by DMLE+2.3 and ESTIAGE, we were able to estimate the age of the variant between 2300 and 3125 years. By extending the haplotype analysis to 14 additional carrier families, a shared core haplotype was revealed among all carriers matching the conserved region previously identified in the high-density SNP analysis. These findings are consistent with CHEK2 c.349A>G being a founder variant associated with increased PrCa risk, suggesting its potential usefulness for cost-effective targeted genetic screening in PrCa families.


BRCA1 and BRCA2 5' noncoding region variants identified in breast cancer patients alter promoter activity and protein binding.

  • Leslie J Burke‎ et al.
  • Human mutation‎
  • 2018‎

The widespread use of next generation sequencing for clinical testing is detecting an escalating number of variants in noncoding regions of the genome. The clinical significance of the majority of these variants is currently unknown, which presents a significant clinical challenge. We have screened over 6,000 early-onset and/or familial breast cancer (BC) cases collected by the ENIGMA consortium for sequence variants in the 5' noncoding regions of BC susceptibility genes BRCA1 and BRCA2, and identified 141 rare variants with global minor allele frequency < 0.01, 76 of which have not been reported previously. Bioinformatic analysis identified a set of 21 variants most likely to impact transcriptional regulation, and luciferase reporter assays detected altered promoter activity for four of these variants. Electrophoretic mobility shift assays demonstrated that three of these altered the binding of proteins to the respective BRCA1 or BRCA2 promoter regions, including NFYA binding to BRCA1:c.-287C>T and PAX5 binding to BRCA2:c.-296C>T. Clinical classification of variants affecting promoter activity, using existing prediction models, found no evidence to suggest that these variants confer a high risk of disease. Further studies are required to determine if such variation may be associated with a moderate or low risk of BC.


Investigating the role of mitochondrial haplogroups in genetic predisposition to meningococcal disease.

  • Antonio Salas‎ et al.
  • PloS one‎
  • 2009‎

Meningococcal disease remains one of the most important infectious causes of death in industrialized countries. The highly diverse clinical presentation and prognosis of Neisseria meningitidis infections are the result of complex host genetics and environmental interactions. We investigated whether mitochondrial genetic background contributes to meningococcal disease (MD) susceptibility.


Molecular analysis of the APC and MUTYH genes in Galician and Catalonian FAP families: a different spectrum of mutations?

  • Nuria Gómez-Fernández‎ et al.
  • BMC medical genetics‎
  • 2009‎

Familial adenomatous polyposis (FAP) is an autosomal dominant-inherited colorectal cancer syndrome, caused by germline mutations in the APC gene. Recently, biallelic mutations in MUTYH have also been identified in patients with multiple colorectal adenomas and in APC-negative patients with FAP. The aim of this work is therefore to determine the frequency of APC and MUTYH mutations among FAP families from two Spanish populations.


Meta-analysis of Genome Wide Association Studies Identifies Genetic Markers of Late Toxicity Following Radiotherapy for Prostate Cancer.

  • Sarah L Kerns‎ et al.
  • EBioMedicine‎
  • 2016‎

Nearly 50% of cancer patients undergo radiotherapy. Late radiotherapy toxicity affects quality-of-life in long-term cancer survivors and risk of side-effects in a minority limits doses prescribed to the majority of patients. Development of a test predicting risk of toxicity could benefit many cancer patients. We aimed to meta-analyze individual level data from four genome-wide association studies from prostate cancer radiotherapy cohorts including 1564 men to identify genetic markers of toxicity. Prospectively assessed two-year toxicity endpoints (urinary frequency, decreased urine stream, rectal bleeding, overall toxicity) and single nucleotide polymorphism (SNP) associations were tested using multivariable regression, adjusting for clinical and patient-related risk factors. A fixed-effects meta-analysis identified two SNPs: rs17599026 on 5q31.2 with urinary frequency (odds ratio [OR] 3.12, 95% confidence interval [CI] 2.08-4.69, p-value 4.16×10(-8)) and rs7720298 on 5p15.2 with decreased urine stream (OR 2.71, 95% CI 1.90-3.86, p-value=3.21×10(-8)). These SNPs lie within genes that are expressed in tissues adversely affected by pelvic radiotherapy including bladder, kidney, rectum and small intestine. The results show that heterogeneous radiotherapy cohorts can be combined to identify new moderate-penetrance genetic variants associated with radiotherapy toxicity. The work provides a basis for larger collaborative efforts to identify enough variants for a future test involving polygenic risk profiling.


Radiogenomics Consortium Genome-Wide Association Study Meta-Analysis of Late Toxicity After Prostate Cancer Radiotherapy.

  • Sarah L Kerns‎ et al.
  • Journal of the National Cancer Institute‎
  • 2020‎

A total of 10%-20% of patients develop long-term toxicity following radiotherapy for prostate cancer. Identification of common genetic variants associated with susceptibility to radiotoxicity might improve risk prediction and inform functional mechanistic studies.


Transcriptome-wide association study of breast cancer risk by estrogen-receptor status.

  • Helian Feng‎ et al.
  • Genetic epidemiology‎
  • 2020‎

Previous transcriptome-wide association studies (TWAS) have identified breast cancer risk genes by integrating data from expression quantitative loci and genome-wide association studies (GWAS), but analyses of breast cancer subtype-specific associations have been limited. In this study, we conducted a TWAS using gene expression data from GTEx and summary statistics from the hitherto largest GWAS meta-analysis conducted for breast cancer overall, and by estrogen receptor subtypes (ER+ and ER-). We further compared associations with ER+ and ER- subtypes, using a case-only TWAS approach. We also conducted multigene conditional analyses in regions with multiple TWAS associations. Two genes, STXBP4 and HIST2H2BA, were specifically associated with ER+ but not with ER- breast cancer. We further identified 30 TWAS-significant genes associated with overall breast cancer risk, including four that were not identified in previous studies. Conditional analyses identified single independent breast-cancer gene in three of six regions harboring multiple TWAS-significant genes. Our study provides new information on breast cancer genetics and biology, particularly about genomic differences between ER+ and ER- breast cancer.


Prostate cancer risk stratification improvement across multiple ancestries with new polygenic hazard score.

  • Minh-Phuong Huynh-Le‎ et al.
  • Prostate cancer and prostatic diseases‎
  • 2022‎

Prostate cancer risk stratification using single-nucleotide polymorphisms (SNPs) demonstrates considerable promise in men of European, Asian, and African genetic ancestries, but there is still need for increased accuracy. We evaluated whether including additional SNPs in a prostate cancer polygenic hazard score (PHS) would improve associations with clinically significant prostate cancer in multi-ancestry datasets.


Copy number variants as modifiers of breast cancer risk for BRCA1/BRCA2 pathogenic variant carriers.

  • Christopher Hakkaart‎ et al.
  • Communications biology‎
  • 2022‎

The contribution of germline copy number variants (CNVs) to risk of developing cancer in individuals with pathogenic BRCA1 or BRCA2 variants remains relatively unknown. We conducted the largest genome-wide analysis of CNVs in 15,342 BRCA1 and 10,740 BRCA2 pathogenic variant carriers. We used these results to prioritise a candidate breast cancer risk-modifier gene for laboratory analysis and biological validation. Notably, the HR for deletions in BRCA1 suggested an elevated breast cancer risk estimate (hazard ratio (HR) = 1.21), 95% confidence interval (95% CI = 1.09-1.35) compared with non-CNV pathogenic variants. In contrast, deletions overlapping SULT1A1 suggested a decreased breast cancer risk (HR = 0.73, 95% CI 0.59-0.91) in BRCA1 pathogenic variant carriers. Functional analyses of SULT1A1 showed that reduced mRNA expression in pathogenic BRCA1 variant cells was associated with reduced cellular proliferation and reduced DNA damage after treatment with DNA damaging agents. These data provide evidence that deleterious variants in BRCA1 plus SULT1A1 deletions contribute to variable breast cancer risk in BRCA1 carriers.


Polygenic hazard score is associated with prostate cancer in multi-ethnic populations.

  • Minh-Phuong Huynh-Le‎ et al.
  • Nature communications‎
  • 2021‎

Genetic models for cancer have been evaluated using almost exclusively European data, which could exacerbate health disparities. A polygenic hazard score (PHS1) is associated with age at prostate cancer diagnosis and improves screening accuracy in Europeans. Here, we evaluate performance of PHS2 (PHS1, adapted for OncoArray) in a multi-ethnic dataset of 80,491 men (49,916 cases, 30,575 controls). PHS2 is associated with age at diagnosis of any and aggressive (Gleason score ≥ 7, stage T3-T4, PSA ≥ 10 ng/mL, or nodal/distant metastasis) cancer and prostate-cancer-specific death. Associations with cancer are significant within European (n = 71,856), Asian (n = 2,382), and African (n = 6,253) genetic ancestries (p < 10-180). Comparing the 80th/20th PHS2 percentiles, hazard ratios for prostate cancer, aggressive cancer, and prostate-cancer-specific death are 5.32, 5.88, and 5.68, respectively. Within European, Asian, and African ancestries, hazard ratios for prostate cancer are: 5.54, 4.49, and 2.54, respectively. PHS2 risk-stratifies men for any, aggressive, and fatal prostate cancer in a multi-ethnic dataset.


BRCA1 Circos: a visualisation resource for functional analysis of missense variants.

  • Ankita Jhuraney‎ et al.
  • Journal of medical genetics‎
  • 2015‎

Inactivating germline mutations in the tumour suppressor gene BRCA1 are associated with a significantly increased risk of developing breast and ovarian cancer. A large number (>1500) of unique BRCA1 variants have been identified in the population and can be classified as pathogenic, non-pathogenic or as variants of unknown significance (VUS). Many VUS are rare missense variants leading to single amino acid changes. Their impact on protein function cannot be directly inferred from sequence information, precluding assessment of their pathogenicity. Thus, functional assays are critical to assess the impact of these VUS on protein activity. BRCA1 is a multifunctional protein and different assays have been used to assess the impact of variants on different biochemical activities and biological processes.


The 'Pokemon' (ZBTB7) Gene: No Evidence of Association with Sporadic Breast Cancer.

  • Antonio Salas‎ et al.
  • Clinical medicine. Oncology‎
  • 2008‎

It has been proposed that the excess of familiar risk associated with breast cancer could be explained by the cumulative effect of multiple weakly predisposing alleles. The transcriptional repressor FBI1, also known as Pokemon, has recently been identified as a critical factor in oncogenesis. This protein is encoded by the ZBTB7 gene. Here we aimed to determine whether polymorphisms in ZBTB7 are associated with breast cancer risk in a sample of cases and controls collected in hospitals from North and Central Spanish patients. We genotyped 15 SNPs in ZBTB7, including the flanking regions, with an average coverage of 1 SNP/2.4 Kb, in 360 sporadic breast cancer cases and 402 controls. Comparison of allele, genotype and haplotype frequencies between cases and controls did not reveal associations using Pearson's chi-square test and a permutation procedure to correct for multiple test. In this, the first study of the ZBTB7 gene in relation to, sporadic breast cancer, we found no evidence of an association.


Indian signatures in the westernmost edge of the European Romani diaspora: new insight from mitogenomes.

  • Alberto Gómez-Carballa‎ et al.
  • PloS one‎
  • 2013‎

In agreement with historical documentation, several genetic studies have revealed ancestral links between the European Romani and India. The entire mitochondrial DNA (mtDNA) of 27 Spanish Romani was sequenced in order to shed further light on the origins of this population. The data were analyzed together with a large published dataset (mainly hypervariable region I [HVS-I] haplotypes) of Romani (N=1,353) and non-Romani worldwide populations (N>150,000). Analysis of mitogenomes allowed the characterization of various Romani-specific clades. M5a1b1a1 is the most distinctive European Romani haplogroup; it is present in all Romani groups at variable frequencies (with only sporadic findings in non-Romani) and represents 18% of their mtDNA pool. Its phylogeographic features indicate that M5a1b1a1 originated 1.5 thousand years ago (kya; 95% CI: 1.3-1.8) in a proto-Romani population living in Northwest India. U3 represents the most characteristic Romani haplogroup of European/Near Eastern origin (12.4%); it appears at dissimilar frequencies across the continent (Iberia: ≈ 31%; Eastern/Central Europe: ≈ 13%). All U3 mitogenomes of our Iberian Romani sample fall within a new sub-clade, U3b1c, which can be dated to 0.5 kya (95% CI: 0.3-0.7); therefore, signaling a lower bound for the founder event that followed admixture in Europe/Near East. Other minor European/Near Eastern haplogroups (e.g. H24, H88a) were also assimilated into the Romani by introgression with neighboring populations during their diaspora into Europe; yet some show a differentiation from the phylogenetically closest non-Romani counterpart. The phylogeny of Romani mitogenomes shows clear signatures of low effective population sizes and founder effects. Overall, these results are in good agreement with historical documentation, suggesting that cultural identity and relative isolation have allowed the Romani to preserve a distinctive mtDNA heritage, with some features linking them unequivocally to their ancestral Indian homeland.


Analysis of PALB2 gene in BRCA1/BRCA2 negative Spanish hereditary breast/ovarian cancer families with pancreatic cancer cases.

  • Ana Blanco‎ et al.
  • PloS one‎
  • 2013‎

The PALB2 gene, also known as FANCN, forms a bond and co-localizes with BRCA2 in DNA repair. Germline mutations in PALB2 have been identified in approximately 1% of familial breast cancer and 3-4% of familial pancreatic cancer. The goal of this study was to determine the prevalence of PALB2 mutations in a population of BRCA1/BRCA2 negative breast cancer patients selected from either a personal or family history of pancreatic cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: