Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 43 papers

Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans.

  • Jeremy M Van Raamsdonk‎ et al.
  • PLoS genetics‎
  • 2009‎

The oxidative stress theory of aging postulates that aging results from the accumulation of molecular damage caused by reactive oxygen species (ROS) generated during normal metabolism. Superoxide dismutases (SODs) counteract this process by detoxifying superoxide. It has previously been shown that elimination of either cytoplasmic or mitochondrial SOD in yeast, flies, and mice results in decreased lifespan. In this experiment, we examine the effect of eliminating each of the five individual sod genes present in Caenorhabditis elegans. In contrast to what is observed in other model organisms, none of the sod deletion mutants shows decreased lifespan compared to wild-type worms, despite a clear increase in sensitivity to paraquat- and juglone-induced oxidative stress. In fact, even mutants lacking combinations of two or three sod genes survive at least as long as wild-type worms. Examination of gene expression in these mutants reveals mild compensatory up-regulation of other sod genes. Interestingly, we find that sod-2 mutants are long-lived despite a significant increase in oxidatively damaged proteins. Testing the effect of sod-2 deletion on known pathways of lifespan extension reveals a clear interaction with genes that affect mitochondrial function: sod-2 deletion markedly increases lifespan in clk-1 worms while clearly decreasing the lifespan of isp-1 worms. Combined with the mitochondrial localization of SOD-2 and the fact that sod-2 mutant worms exhibit phenotypes that are characteristic of long-lived mitochondrial mutants-including slow development, low brood size, and slow defecation-this suggests that deletion of sod-2 extends lifespan through a similar mechanism. This conclusion is supported by our demonstration of decreased oxygen consumption in sod-2 mutant worms. Overall, we show that increased oxidative stress caused by deletion of sod genes does not result in decreased lifespan in C. elegans and that deletion of sod-2 extends worm lifespan by altering mitochondrial function.


Uncoupling of oxidative stress resistance and lifespan in long-lived isp-1 mitochondrial mutants in Caenorhabditis elegans.

  • Dylan J Dues‎ et al.
  • Free radical biology & medicine‎
  • 2017‎

Mutations affecting components of the mitochondrial electron transport chain have been shown to increase lifespan in multiple species including the worm Caenorhabditis elegans. While it was originally proposed that decreased generation of reactive oxygen species (ROS) resulting from lower rates of electron transport could account for the observed increase in lifespan, recent evidence indicates that ROS levels are increased in at least some of these long-lived mitochondrial mutants. Here, we show that the long-lived mitochondrial mutant isp-1 worms have increased resistance to oxidative stress. Our results suggest that elevated ROS levels in isp-1 worms cause the activation of multiple stress-response pathways including the mitochondrial unfolded protein response, the SKN-1-mediated stress response, and the hypoxia response. In addition, these worms have increased expression of specific antioxidant enzymes, including a marked upregulation of the inducible superoxide dismutase genes sod-3 and sod-5. Examining the contribution of sod-3 and sod-5 to the oxidative stress resistance in isp-1 worms revealed that loss of either of these genes increased resistance to oxidative stress, but not other forms of stress. Deletion of sod-3 or sod-5 decreased the lifespan of isp-1 worms and further exacerbated their slow physiologic rates. Thus, while deletion of sod-3 and sod-5 genes has little impact on stress resistance, physiologic rates or lifespan in wild-type worms, these genes are required for the longevity of isp-1 worms. Overall, this work shows that the increased resistance to oxidative stress in isp-1 worms does not account for their longevity, and that resistance to oxidative stress can be experimentally dissociated from lifespan.


Activation of DAF-16/FOXO by reactive oxygen species contributes to longevity in long-lived mitochondrial mutants in Caenorhabditis elegans.

  • Megan M Senchuk‎ et al.
  • PLoS genetics‎
  • 2018‎

Mild deficits in mitochondrial function have been shown to increase lifespan in multiple species including worms, flies and mice. Here, we study three C. elegans mitochondrial mutants (clk-1, isp-1 and nuo-6) to identify overlapping genetic pathways that contribute to their longevity. We find that genes regulated by the FOXO transcription factor DAF-16 are upregulated in all three strains, and that the transcriptional changes present in these worms overlap significantly with the long-lived insulin-IGF1 signaling pathway mutant daf-2. We show that DAF-16 and multiple DAF-16 interacting proteins (MATH-33, IMB-2, CST-1/2, BAR-1) are required for the full longevity of all three mitochondrial mutants. Our results suggest that the activation of DAF-16 in these mutants results from elevated levels of reactive oxygen species. Overall, this work reveals an overlapping genetic pathway required for longevity in three mitochondrial mutants, and, combined with previous work, demonstrates that DAF-16 is a downstream mediator of lifespan extension in multiple pathways of longevity.


Dietary Restriction Extends Lifespan through Metabolic Regulation of Innate Immunity.

  • Ziyun Wu‎ et al.
  • Cell metabolism‎
  • 2019‎

Chronic inflammation predisposes to aging-associated disease, but it is unknown whether immunity regulation might be important for extending healthy lifespan. Here we show that in C. elegans, dietary restriction (DR) extends lifespan by modulating a conserved innate immunity pathway that is regulated by p38 signaling and the transcription factor ATF-7. Longevity from DR depends upon p38-ATF-7 immunity being intact but downregulated to a basal level. p38-ATF-7 immunity accelerates aging when hyperactive, influences lifespan independently of pathogen exposure, and is activated by nutrients independently of mTORC1, a major DR mediator. Longevity from reduced insulin/IGF-1 signaling (rIIS) also involves p38-ATF-7 downregulation, with signals from DAF-16/FOXO reducing food intake. We conclude that p38-ATF-7 is an immunometabolic pathway that senses bacterial and nutrient signals, that immunity modulation is critical for DR, and that DAF-16/FOXO couples appetite to growth regulation. These conserved mechanisms may influence aging in more complex organisms.


α-synuclein expression from a single copy transgene increases sensitivity to stress and accelerates neuronal loss in genetic models of Parkinson's disease.

  • Jason F Cooper‎ et al.
  • Experimental neurology‎
  • 2018‎

Parkinson's disease (PD) is the second most common neurodegenerative disease and is characterized by the formation of α-synuclein-containing protein aggregates called Lewy bodies within the brain. A crucial role for α-synuclein in the pathogenesis of PD is also suggested by the fact that point mutations, increased copy number, or polymorphisms in the α-synuclein gene SNCA all cause or contribute to the development of PD. In addition to SNCA, an increasing number of other genes have been implicated in PD. While mutations in at least some of these genes have been shown to cause the formation of Lewy bodies, the role of α-synuclein in these genetic forms of PD remains poorly defined. Since C. elegans do not have a homolog of α-synuclein, this organism provides the opportunity to identify synergism between α-synuclein and other genes implicated in PD. To do this, we generated a novel C. elegans model in which wild-type α-synuclein is ubiquitously expressed from a single copy transgene, and examined the resulting effect on phenotypic deficits in PD deletion mutants affecting PARK2/pdr-1, PINK1/pink-1, DJ-1/djr-1.1 and ATP13A2/catp-6. While the PD deletion mutants exhibit only mild phenotypic deficits in absence of α-synuclein, expression of wild-type α-synuclein caused increased sensitivity to multiple stresses, induced deficits in dopamine-dependent behavior, and accelerated loss of dopamine neurons. Overall, these results suggest that the recessive loss of function mutations act together with α-synuclein to cause PD, and that α-synuclein lowering strategies may be effective in genetic forms of PD.


Targeting Mitochondrial Network Disorganization is Protective in C. elegans Models of Huntington's Disease.

  • Emily Machiela‎ et al.
  • Aging and disease‎
  • 2021‎

Huntington's disease (HD) is an adult-onset neurodegenerative disease caused by a trinucleotide CAG repeat expansion in the HTT gene. While the pathogenesis of HD is incompletely understood, mitochondrial dysfunction is thought to be a key contributor. In this work, we used C. elegans models to elucidate the role of mitochondrial dynamics in HD. We found that expression of a disease-length polyglutamine tract in body wall muscle, either with or without exon 1 of huntingtin, results in mitochondrial fragmentation and mitochondrial network disorganization. While mitochondria in young HD worms form elongated tubular networks as in wild-type worms, mitochondrial fragmentation occurs with age as expanded polyglutamine protein forms aggregates. To correct the deficit in mitochondrial morphology, we reduced levels of DRP-1, the GTPase responsible for mitochondrial fission. Surprisingly, we found that disrupting drp-1 can have detrimental effects, which are dependent on how much expression is decreased. To avoid potential negative side effects of disrupting drp-1, we examined whether decreasing mitochondrial fragmentation by targeting other genes could be beneficial. Through this approach, we identified multiple genetic targets that rescue movement deficits in worm models of HD. Three of these genetic targets, pgp-3, F25B5.6 and alh-12, increased movement in the HD worm model and restored mitochondrial morphology to wild-type morphology. This work demonstrates that disrupting the mitochondrial fission gene drp-1 can be detrimental in animal models of HD, but that decreasing mitochondrial fragmentation by targeting other genes can be protective. Overall, this study identifies novel therapeutic targets for HD aimed at improving mitochondrial health.


Exercise preserves physical fitness during aging through AMPK and mitochondrial dynamics.

  • Juliane Cruz Campos‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Exercise is a nonpharmacological intervention that improves health during aging and a valuable tool in the diagnostics of aging-related diseases. In muscle, exercise transiently alters mitochondrial functionality and metabolism. Mitochondrial fission and fusion are critical effectors of mitochondrial plasticity, which allows a fine-tuned regulation of organelle connectiveness, size, and function. Here we have investigated the role of mitochondrial dynamics during exercise in the model organism Caenorhabditis elegans. We show that in body-wall muscle, a single exercise session induces a cycle of mitochondrial fragmentation followed by fusion after a recovery period, and that daily exercise sessions delay the mitochondrial fragmentation and physical fitness decline that occur with aging. Maintenance of proper mitochondrial dynamics is essential for physical fitness, its enhancement by exercise training, and exercise-induced remodeling of the proteome. Surprisingly, among the long-lived genotypes we analyzed (isp-1,nuo-6, daf-2, eat-2, and CA-AAK-2), constitutive activation of AMP-activated protein kinase (AMPK) uniquely preserves physical fitness during aging, a benefit that is abolished by impairment of mitochondrial fission or fusion. AMPK is also required for physical fitness to be enhanced by exercise, with our findings together suggesting that exercise may enhance muscle function through AMPK regulation of mitochondrial dynamics. Our results indicate that mitochondrial connectivity and the mitochondrial dynamics cycle are essential for maintaining physical fitness and exercise responsiveness during aging and suggest that AMPK activation may recapitulate some exercise benefits. Targeting mechanisms to optimize mitochondrial fission and fusion, as well as AMPK activation, may represent promising strategies for promoting muscle function during aging.


TBC-2 regulates RAB-5/RAB-7-mediated endosomal trafficking in Caenorhabditis elegans.

  • Laëtitia Chotard‎ et al.
  • Molecular biology of the cell‎
  • 2010‎

During endosome maturation the early endosomal Rab5 GTPase is replaced with the late endosomal Rab7 GTPase. It has been proposed that active Rab5 can recruit and activate Rab7, which in turn could inactivate and remove Rab5. However, many of the Rab5 and Rab7 regulators that mediate endosome maturation are not known. Here, we identify Caenorhabditis elegans TBC-2, a conserved putative Rab GTPase-activating protein (GAP), as a regulator of endosome to lysosome trafficking in several tissues. We show that tbc-2 mutant animals accumulate enormous RAB-7-positive late endosomes in the intestine containing refractile material. RAB-5, RAB-7, and components of the homotypic fusion and vacuole protein sorting (HOPS) complex, a RAB-7 effector/putative guanine nucleotide exchange factor (GEF), are required for the tbc-2(-) intestinal phenotype. Expression of activated RAB-5 Q78L in the intestine phenocopies the tbc-2(-) large late endosome phenotype in a RAB-7 and HOPS complex-dependent manner. TBC-2 requires the catalytic arginine-finger for function in vivo and displays the strongest GAP activity on RAB-5 in vitro. However, TBC-2 colocalizes primarily with RAB-7 on late endosomes and requires RAB-7 for membrane localization. Our data suggest that TBC-2 functions on late endosomes to inactivate RAB-5 during endosome maturation.


RAB-7 antagonizes LET-23 EGFR signaling during vulva development in Caenorhabditis elegans.

  • Olga Skorobogata‎ et al.
  • PloS one‎
  • 2012‎

The Rab7 GTPase regulates late endosome trafficking of the Epidermal Growth Factor Receptor (EGFR) to the lysosome for degradation. However, less is known about how Rab7 activity, functioning late in the endocytic pathway, affects EGFR signaling. Here we used Caenorhabditis elegans vulva cell fate induction, a paradigm for genetic analysis of EGFR/Receptor Tyrosine Kinase (RTK) signaling, to assess the genetic requirements for rab-7. Using a rab-7 deletion mutant, we demonstrate that rab-7 antagonizes LET-23 EGFR signaling to a similar extent, but in a distinct manner, as previously described negative regulators such as sli-1 c-Cbl. Epistasis analysis places rab-7 upstream of or in parallel to lin-3 EGF and let-23 EGFR. However, expression of gfp::rab-7 in the Vulva Presursor Cells (VPCs) is sufficient to rescue the rab-7(-) VPC induction phenotypes indicating that RAB-7 functions in the signal receiving cell. We show that components of the Endosomal Sorting Complex Required for Transport (ESCRT)-0, and -I, complexes, hgrs-1 Hrs, and vps-28, also antagonize signaling, suggesting that LET-23 EGFR likely transits through Multivesicular Bodies (MVBs) en route to the lysosome. Consistent with RAB-7 regulating LET-23 EGFR trafficking, rab-7 mutants have increased number of LET-23::GFP-positive endosomes. Our data imply that Rab7, by mediating EGFR trafficking and degradation, plays an important role in downregulation of EGFR signaling. Failure to downregulate EGFR signaling contributes to oncogenesis, and thus Rab7 could possess tumor suppressor activity in humans.


Dynein-mediated trafficking negatively regulates LET-23 EGFR signaling.

  • Olga Skorobogata‎ et al.
  • Molecular biology of the cell‎
  • 2016‎

Epidermal Growth Factor Receptor (EGFR) signaling is essential for animal development and increased signaling underlies many human cancers. Identifying the genes and cellular processes that regulate EGFR signaling in vivo will help elucidate how this pathway can become inappropriately activated. Caenorhabditis elegans vulva development provides an in vivo model to genetically dissect EGFR signaling. Here we identified a mutation in dhc-1, the heavy chain of the cytoplasmic dynein minus-end directed microtubule motor, in a genetic screen for regulators of EGFR signaling. Despite the many cellular functions of dynein, DHC-1 is a strong negative regulator of EGFR signaling during vulva induction. DHC-1 is required in the signal-receiving cell, genetically functions upstream or in parallel to LET-23 EGFR. LET-23 EGFR accumulates in cytoplasmic foci in dhc-1 mutants consistent with mammalian cell studies whereby dynein has been shown to regulate late endosome trafficking of EGFR with the Rab7 GTPase. However, we found different distributions of LET-23 EGFR foci in rab-7 versus dhc-1 mutants, suggesting that dynein functions at an earlier step of LET-23 EGFR trafficking to the lysosome than RAB-7. Our results demonstrate an in vivo role for dynein in limiting LET-23 EGFR signaling via endosomal trafficking.


The VPS34 PI3K negatively regulates RAB-5 during endosome maturation.

  • Fiona Law‎ et al.
  • Journal of cell science‎
  • 2017‎

The GTPase Rab5 and phosphatidylinositol-3 phosphate [PI(3)P] coordinately regulate endosome trafficking. Rab5 recruits Vps34, the class III phosphoinositide 3-kinase (PI3K), to generate PI(3)P and recruit PI(3)P-binding proteins. Loss of Rab5 and loss of Vps34 have opposite effects on endosome size, suggesting that our understanding of how Rab5 and PI(3)P cooperate is incomplete. Here, we report a novel regulatory loop whereby Caenorhabditis elegans VPS-34 inactivates RAB-5 via recruitment of the TBC-2 Rab GTPase-activating protein. We found that loss of VPS-34 caused a phenotype with large late endosomes, as with loss of TBC-2, and that Rab5 activity (mice have two Rab5 isoforms, Rab5a and Rab5b) is increased in Vps34-knockout mouse embryonic fibroblasts (Vps34 is also known as PIK3C3 in mammals). We found that VPS-34 is required for TBC-2 endosome localization and that the pleckstrin homology (PH) domain of TBC-2 bound PI(3)P. Deletion of the PH domain enhanced TBC-2 localization to endosomes in a VPS-34-dependent manner. Thus, PI(3)P binding of the PH domain might be permissive for another PI(3)P-regulated interaction that recruits TBC-2 to endosomes. Therefore, VPS-34 recruits TBC-2 to endosomes to inactivate RAB-5 to ensure the directionality of endosome maturation.


Mitochondrial unfolded protein response transcription factor ATFS-1 promotes longevity in a long-lived mitochondrial mutant through activation of stress response pathways.

  • Ziyun Wu‎ et al.
  • BMC biology‎
  • 2018‎

The mitochondrial unfolded protein response (mitoUPR) is a stress response pathway activated by disruption of proteostasis in the mitochondria. This pathway has been proposed to influence lifespan, with studies suggesting that mitoUPR activation has complex effects on longevity.


Multiple genetic pathways regulating lifespan extension are neuroprotective in a G2019S LRRK2 nematode model of Parkinson's disease.

  • Megan M Senchuk‎ et al.
  • Neurobiology of disease‎
  • 2021‎

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most frequent cause of late-onset, familial Parkinson's disease (PD), and LRRK2 variants are associated with increased risk for sporadic PD. While advanced age represents the strongest risk factor for disease development, it remains unclear how different age-related pathways interact to regulate LRRK2-driven late-onset PD. In this study, we employ a C. elegans model expressing PD-linked G2019S LRRK2 to examine the interplay between age-related pathways and LRRK2-induced dopaminergic neurodegeneration. We find that multiple genetic pathways that regulate lifespan extension can provide robust neuroprotection against mutant LRRK2. However, the level of neuroprotection does not strictly correlate with the magnitude of lifespan extension, suggesting that lifespan can be experimentally dissociated from neuroprotection. Using tissue-specific RNAi, we demonstrate that lifespan-regulating pathways, including insulin/insulin-like growth factor-1 (IGF-1) signaling, target of rapamycin (TOR), and mitochondrial respiration, can be directly manipulated in neurons to mediate neuroprotection. We extend this finding for AGE-1/PI3K, where pan-neuronal versus dopaminergic neuronal restoration of AGE-1 reveals both cell-autonomous and non-cell-autonomous neuroprotective mechanisms downstream of insulin signaling. Our data demonstrate the importance of distinct lifespan-regulating pathways in the pathogenesis of LRRK2-linked PD, and suggest that extended longevity is broadly neuroprotective via the actions of these pathways at least in part within neurons. This study further highlights the complex interplay that occurs between cells and tissues during organismal aging and disease manifestation.


LIN-10 can promote LET-23 EGFR signaling and trafficking independently of LIN-2 and LIN-7.

  • Kimberley D Gauthier‎ et al.
  • Molecular biology of the cell‎
  • 2021‎

During Caenorhabditis elegans larval development, an inductive signal mediated by the LET-23 EGFR (epidermal growth factor receptor), specifies three of six vulva precursor cells (VPCs) to adopt vulval cell fates. An evolutionarily conserved complex consisting of PDZ domain-containing scaffold proteins LIN-2 (CASK), LIN-7 (Lin7 or Veli), and LIN-10 (APBA1 or Mint1) (LIN-2/7/10) mediates basolateral LET-23 EGFR localization in the VPCs to permit signal transmission and development of the vulva. We recently found that the LIN-2/7/10 complex likely forms at Golgi ministacks; however, the mechanism through which the complex targets the receptor to the basolateral membrane remains unknown. Here we found that overexpression of LIN-10 or LIN-7 can compensate for loss of their complex components by promoting LET-23 EGFR signaling through previously unknown complex-independent and receptor-dependent pathways. In particular, LIN-10 can independently promote basolateral LET-23 EGFR localization, and its complex-independent function uniquely requires its PDZ domains that also regulate its localization to Golgi. These studies point to a novel complex-independent function for LIN-7 and LIN-10 that broadens our understanding of how this complex regulates targeted sorting of membrane proteins.


Beneficial and Detrimental Effects of Reactive Oxygen Species on Lifespan: A Comprehensive Review of Comparative and Experimental Studies.

  • Hazel J Shields‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

Aging is the greatest risk factor for a multitude of diseases including cardiovascular disease, neurodegeneration and cancer. Despite decades of research dedicated to understanding aging, the mechanisms underlying the aging process remain incompletely understood. The widely-accepted free radical theory of aging (FRTA) proposes that the accumulation of oxidative damage caused by reactive oxygen species (ROS) is one of the primary causes of aging. To define the relationship between ROS and aging, there have been two main approaches: comparative studies that measure outcomes related to ROS across species with different lifespans, and experimental studies that modulate ROS levels within a single species using either a genetic or pharmacologic approach. Comparative studies have shown that levels of ROS and oxidative damage are inversely correlated with lifespan. While these studies in general support the FRTA, this type of experiment can only demonstrate correlation, not causation. Experimental studies involving the manipulation of ROS levels in model organisms have generally shown that interventions that increase ROS tend to decrease lifespan, while interventions that decrease ROS tend to increase lifespan. However, there are also multiple examples in which the opposite is observed: increasing ROS levels results in extended longevity, and decreasing ROS levels results in shortened lifespan. While these studies contradict the predictions of the FRTA, these experiments have been performed in a very limited number of species, all of which have a relatively short lifespan. Overall, the data suggest that the relationship between ROS and lifespan is complex, and that ROS can have both beneficial or detrimental effects on longevity depending on the species and conditions. Accordingly, the relationship between ROS and aging is difficult to generalize across the tree of life.


Global profiling of distinct cysteine redox forms reveals wide-ranging redox regulation in C. elegans.

  • Jin Meng‎ et al.
  • Nature communications‎
  • 2021‎

Post-translational changes in the redox state of cysteine residues can rapidly and reversibly alter protein functions, thereby modulating biological processes. The nematode C. elegans is an ideal model organism for studying cysteine-mediated redox signaling at a network level. Here we present a comprehensive, quantitative, and site-specific profile of the intrinsic reactivity of the cysteinome in wild-type C. elegans. We also describe a global characterization of the C. elegans redoxome in which we measured changes in three major cysteine redox forms after H2O2 treatment. Our data revealed redox-sensitive events in translation, growth signaling, and stress response pathways, and identified redox-regulated cysteines that are important for signaling through the p38 MAP kinase (MAPK) pathway. Our in-depth proteomic dataset provides a molecular basis for understanding redox signaling in vivo, and will serve as a valuable and rich resource for the field of redox biology.


Wild-type huntingtin ameliorates striatal neuronal atrophy but does not prevent other abnormalities in the YAC128 mouse model of Huntington disease.

  • Jeremy M Van Raamsdonk‎ et al.
  • BMC neuroscience‎
  • 2006‎

Huntington disease (HD) is an adult onset neurodegenerative disorder caused by a polyglutamine expansion in the huntingtin (htt) protein. Htt function is essential for embryonic survival as well as normal function during the postnatal period. In addition to having roles in transcription and transport, recent evidence demonstrates that wild-type htt is neuroprotective in vivo. To determine whether treatment with wild-type htt would be beneficial in HD, we crossed the YAC128 mouse model of HD with mice that over-express wild-type htt (YAC18 mice) to generate YAC128 mice that over-express wild-type htt (YAC18/128 mice).


Mild mitochondrial impairment enhances innate immunity and longevity through ATFS-1 and p38 signaling.

  • Juliane C Campos‎ et al.
  • EMBO reports‎
  • 2021‎

While mitochondrial function is essential for life in all multicellular organisms, a mild impairment of mitochondrial function can extend longevity in model organisms. By understanding the molecular mechanisms involved, these pathways might be targeted to promote healthy aging. In studying two long-lived mitochondrial mutants in C. elegans, we found that disrupting subunits of the mitochondrial electron transport chain results in upregulation of genes involved in innate immunity, which is driven by the mitochondrial unfolded protein response (mitoUPR) but also dependent on the canonical p38-mediated innate immune signaling pathway. Both of these pathways are required for the increased resistance to bacterial pathogens and extended longevity of the long-lived mitochondrial mutants, as is the FOXO transcription factor DAF-16. This work demonstrates that both the p38-mediated innate immune signaling pathway and the mitoUPR act in concert on the same innate immunity genes to promote pathogen resistance and longevity and that input from the mitochondria can extend longevity by signaling through these pathways. This indicates that multiple evolutionarily conserved genetic pathways controlling innate immunity also function to modulate lifespan.


Morusin and mulberrin extend the lifespans of yeast and C. elegans via suppressing nutrient-sensing pathways.

  • Pingkang Xu‎ et al.
  • GeroScience‎
  • 2023‎

Compounds with lifespan extension activity are rare, although increasing research efforts have been invested in this field to find ways to extend healthy lifespan. By applying a yeast-based high-throughput assay to identify the chronological lifespan extension activity of mulberry extracts rapidly, we demonstrated that a group of prenylated flavones, particularly morusin and mulberrin, could extend the chronological lifespan of budding yeast via a nutrient-dependent regime by at least partially targeting SCH9. Their antiaging activity could be extended to C. elegans by promoting its longevity, dependent on the full functions of genes akt-1 or akt-2. Moreover, additional benefits were observed from morusin- and mulberrin-treated worms, including increased reproduction without the influence of worm health (pumping rate, pumping decline, and reproduction span). In the human HeLa cell model, morusin and mulberrin inhibited the phosphorylation of p70S6K1, promoted autophagy, and slowed cell senescence. The molecular docking study showed that mulberrin and morusin bind to the same pocket of p70S6K1. Collectively, our findings open up a potential class of prenylated flavones performing their antiaging activity via nutrient-sensing pathways.


Delaying aging is neuroprotective in Parkinson's disease: a genetic analysis in C. elegans models.

  • Jason F Cooper‎ et al.
  • NPJ Parkinson's disease‎
  • 2015‎

Aging is the greatest risk factor for the development of Parkinson's disease (PD). However, the role of aging in the pathogenesis of PD is not known and it is currently uncertain why the symptoms take many decades to develop when inherited mutations that cause the disease can be present from birth. We hypothesize that there are specific changes that take place during the aging process that make cells susceptible to disease-causing mutations that are well-tolerated at younger ages. If so, then interventions that increase lifespan should be beneficial in the treatment of PD. To test this hypothesis, we used the powerful genetics of C. elegans, as this worm has been used extensively in aging research. We crossed transgenic worm models of PD expressing either human mutant α-synuclein (A53T) or LRRK2 (G2019S) with the long-lived insulin-IGF1 receptor mutant, daf-2. The daf-2 mutation increased the lifespan of both PD mutants. The increase in lifespan resulting from the daf-2 mutation rescued the degeneration of dopamine neurons in both worm models of PD and importantly rescued deficits in dopamine-dependent behaviors including basal slowing, ethanol avoidance, and area-restricted searching. Increasing lifespan through daf-2 mutation also delayed the formation of small aggregates in a worm model of PD expressing α-synuclein in the body wall muscle and rescued deficits in resistance to different stresses that were present in the PD mutant worms. Overall, this work suggests that slowing down the aging process may provide an effective treatment for PD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: