Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 22 papers

Dietary Restriction Extends Lifespan through Metabolic Regulation of Innate Immunity.

  • Ziyun Wu‎ et al.
  • Cell metabolism‎
  • 2019‎

Chronic inflammation predisposes to aging-associated disease, but it is unknown whether immunity regulation might be important for extending healthy lifespan. Here we show that in C. elegans, dietary restriction (DR) extends lifespan by modulating a conserved innate immunity pathway that is regulated by p38 signaling and the transcription factor ATF-7. Longevity from DR depends upon p38-ATF-7 immunity being intact but downregulated to a basal level. p38-ATF-7 immunity accelerates aging when hyperactive, influences lifespan independently of pathogen exposure, and is activated by nutrients independently of mTORC1, a major DR mediator. Longevity from reduced insulin/IGF-1 signaling (rIIS) also involves p38-ATF-7 downregulation, with signals from DAF-16/FOXO reducing food intake. We conclude that p38-ATF-7 is an immunometabolic pathway that senses bacterial and nutrient signals, that immunity modulation is critical for DR, and that DAF-16/FOXO couples appetite to growth regulation. These conserved mechanisms may influence aging in more complex organisms.


Activation of DAF-16/FOXO by reactive oxygen species contributes to longevity in long-lived mitochondrial mutants in Caenorhabditis elegans.

  • Megan M Senchuk‎ et al.
  • PLoS genetics‎
  • 2018‎

Mild deficits in mitochondrial function have been shown to increase lifespan in multiple species including worms, flies and mice. Here, we study three C. elegans mitochondrial mutants (clk-1, isp-1 and nuo-6) to identify overlapping genetic pathways that contribute to their longevity. We find that genes regulated by the FOXO transcription factor DAF-16 are upregulated in all three strains, and that the transcriptional changes present in these worms overlap significantly with the long-lived insulin-IGF1 signaling pathway mutant daf-2. We show that DAF-16 and multiple DAF-16 interacting proteins (MATH-33, IMB-2, CST-1/2, BAR-1) are required for the full longevity of all three mitochondrial mutants. Our results suggest that the activation of DAF-16 in these mutants results from elevated levels of reactive oxygen species. Overall, this work reveals an overlapping genetic pathway required for longevity in three mitochondrial mutants, and, combined with previous work, demonstrates that DAF-16 is a downstream mediator of lifespan extension in multiple pathways of longevity.


Health literacy and digital media use: Assessing the Health Literacy Skills Instrument - Short Form and its correlates among African American college students.

  • Judith E Rosenbaum‎ et al.
  • Digital health‎
  • 2018‎

Improving health literacy is increasingly seen as a solution to health problems and inequalities. This study assesses how one of the more recent measures of health literacy, the Health Literacy Skills Instrument - Short Form, performs among African American college students, and ascertains if and how media use relates to health literacy. Results indicate that both the use of health-related websites and apps as well as overall time spent with the media were positively, but conditionally, linked to health literacy. However, findings also pointed to the need for further test development.


Uncoupling of oxidative stress resistance and lifespan in long-lived isp-1 mitochondrial mutants in Caenorhabditis elegans.

  • Dylan J Dues‎ et al.
  • Free radical biology & medicine‎
  • 2017‎

Mutations affecting components of the mitochondrial electron transport chain have been shown to increase lifespan in multiple species including the worm Caenorhabditis elegans. While it was originally proposed that decreased generation of reactive oxygen species (ROS) resulting from lower rates of electron transport could account for the observed increase in lifespan, recent evidence indicates that ROS levels are increased in at least some of these long-lived mitochondrial mutants. Here, we show that the long-lived mitochondrial mutant isp-1 worms have increased resistance to oxidative stress. Our results suggest that elevated ROS levels in isp-1 worms cause the activation of multiple stress-response pathways including the mitochondrial unfolded protein response, the SKN-1-mediated stress response, and the hypoxia response. In addition, these worms have increased expression of specific antioxidant enzymes, including a marked upregulation of the inducible superoxide dismutase genes sod-3 and sod-5. Examining the contribution of sod-3 and sod-5 to the oxidative stress resistance in isp-1 worms revealed that loss of either of these genes increased resistance to oxidative stress, but not other forms of stress. Deletion of sod-3 or sod-5 decreased the lifespan of isp-1 worms and further exacerbated their slow physiologic rates. Thus, while deletion of sod-3 and sod-5 genes has little impact on stress resistance, physiologic rates or lifespan in wild-type worms, these genes are required for the longevity of isp-1 worms. Overall, this work shows that the increased resistance to oxidative stress in isp-1 worms does not account for their longevity, and that resistance to oxidative stress can be experimentally dissociated from lifespan.


Distinctive epigenomic alterations in NF1-deficient cutaneous and plexiform neurofibromas drive differential MKK/p38 signaling.

  • Jamie L Grit‎ et al.
  • Epigenetics & chromatin‎
  • 2021‎

Benign peripheral nerve sheath tumors are the clinical hallmark of Neurofibromatosis Type 1. They account for substantial morbidity and mortality in NF1. Cutaneous (CNF) and plexiform neurofibromas (PNF) share nearly identical histology, but maintain different growth rates and risk of malignant conversion. The reasons for this disparate clinical behavior are not well explained by recent genome or transcriptome profiling studies. We hypothesized that CNFs and PNFs are epigenetically distinct tumor types that exhibit differential signaling due to genome-wide and site-specific methylation events. We interrogated the methylation profiles of 45 CNFs and 17 PNFs from NF1 subjects with the Illumina EPIC 850K methylation array. Based on these profiles, we confirm that CNFs and PNFs are epigenetically distinct tumors with broad differences in higher-order chromatin states and specific methylation events altering genes involved in key biological and cellular processes, such as inflammation, RAS/MAPK signaling, actin cytoskeleton rearrangement, and oxytocin signaling. Based on our identification of two separate DMRs associated with alternative leading exons in MAP2K3, we demonstrate differential RAS/MKK3/p38 signaling between CNFs and PNFs. Epigenetic reinforcement of RAS/MKK/p38 was a defining characteristic of CNFs leading to pro-inflammatory signaling and chromatin conformational changes, whereas PNFs signaled predominantly through RAS/MEK. Tumor size also correlated with specific CpG methylation events. Taken together, these findings confirm that NF1 deficiency influences the epigenetic regulation of RAS signaling fates, accounting for observed differences in CNF and PNF clinical behavior. The extension of these findings is that CNFs may respond differently than PNFs to RAS-targeted therapeutics raising the possibility of targeting p38-mediated inflammation for CNF treatment.


Mithramycin induces promoter reprogramming and differentiation of rhabdoid tumor.

  • Maggie H Chasse‎ et al.
  • EMBO molecular medicine‎
  • 2021‎

Rhabdoid tumor (RT) is a pediatric cancer characterized by the inactivation of SMARCB1, a subunit of the SWI/SNF chromatin remodeling complex. Although this deletion is the known oncogenic driver, there are limited effective therapeutic options for these patients. Here we use unbiased screening of cell line panels to identify a heightened sensitivity of rhabdoid tumor to mithramycin and the second-generation analogue EC8042. The sensitivity of MMA and EC8042 was superior to traditional DNA damaging agents and linked to the causative mutation of the tumor, SMARCB1 deletion. Mithramycin blocks SMARCB1-deficient SWI/SNF activity and displaces the complex from chromatin to cause an increase in H3K27me3. This triggers chromatin remodeling and enrichment of H3K27ac at chromHMM-defined promoters to restore cellular differentiation. These effects occurred at concentrations not associated with DNA damage and were not due to global chromatin remodeling or widespread gene expression changes. Importantly, a single 3-day infusion of EC8042 caused dramatic regressions of RT xenografts, recapitulated the increase in H3K27me3, and cellular differentiation described in vitro to completely cure three out of eight mice.


Dupsifter: a lightweight duplicate marking tool for whole genome bisulfite sequencing.

  • Jacob Morrison‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2023‎

In whole genome sequencing data, polymerase chain reaction amplification results in duplicate DNA fragments coming from the same location in the genome. The process of preparing a whole genome bisulfite sequencing (WGBS) library, on the other hand, can create two DNA fragments from the same location that should not be considered duplicates. Currently, only one WGBS-aware duplicate marking tool exists. However, it only works with the output from a single tool, does not accept streaming input or output, and requires a substantial amount of memory relative to the input size. Dupsifter provides an aligner-agnostic duplicate marking tool that is lightweight, has streaming capabilities, and is memory efficient.


Mitochondrial unfolded protein response transcription factor ATFS-1 promotes longevity in a long-lived mitochondrial mutant through activation of stress response pathways.

  • Ziyun Wu‎ et al.
  • BMC biology‎
  • 2018‎

The mitochondrial unfolded protein response (mitoUPR) is a stress response pathway activated by disruption of proteostasis in the mitochondria. This pathway has been proposed to influence lifespan, with studies suggesting that mitoUPR activation has complex effects on longevity.


2-aminoimidazoles potentiate ß-lactam antimicrobial activity against Mycobacterium tuberculosis by reducing ß-lactamase secretion and increasing cell envelope permeability.

  • Albert B Jeon‎ et al.
  • PloS one‎
  • 2017‎

There is an urgent need to develop new drug treatment strategies to control the global spread of drug-sensitive and multidrug-resistant Mycobacterium tuberculosis (M. tuberculosis). The ß-lactam class of antibiotics is among the safest and most widely prescribed antibiotics, but they are not effective against M. tuberculosis due to intrinsic resistance. This study shows that 2-aminoimidazole (2-AI)-based small molecules potentiate ß-lactam antibiotics against M. tuberculosis. Active 2-AI compounds significantly reduced the minimal inhibitory and bactericidal concentrations of ß-lactams by increasing M. tuberculosis cell envelope permeability and decreasing protein secretion including ß-lactamase. Metabolic labeling and transcriptional profiling experiments revealed that 2-AI compounds impair mycolic acid biosynthesis, export and linkage to the mycobacterial envelope, counteracting an important defense mechanism reducing permeability to external agents. Additionally, other important constituents of the M. tuberculosis outer membrane including sulfolipid-1 and polyacyltrehalose were also less abundant in 2-AI treated bacilli. As a consequence of 2-AI treatment, M. tuberculosis displayed increased sensitivity to SDS, increased permeability to nucleic acid staining dyes, and rapid binding of cell wall targeting antibiotics. Transcriptional profiling analysis further confirmed that 2-AI induces transcriptional regulators associated with cell envelope stress. 2-AI based small molecules potentiate the antimicrobial activity of ß-lactams by a mechanism that is distinct from specific inhibitors of ß-lactamase activity and therefore may have value as an adjunctive anti-TB treatment.


The chromosomal protein SMCHD1 regulates DNA methylation and the 2c-like state of embryonic stem cells by antagonizing TET proteins.

  • Zhijun Huang‎ et al.
  • Science advances‎
  • 2021‎

5-Methylcytosine (5mC) oxidases, the ten-eleven translocation (TET) proteins, initiate DNA demethylation, but it is unclear how 5mC oxidation is regulated. We show that the protein SMCHD1 (structural maintenance of chromosomes flexible hinge domain containing 1) is found in complexes with TET proteins and negatively regulates TET activities. Removal of SMCHD1 from mouse embryonic stem (ES) cells induces DNA hypomethylation, preferentially at SMCHD1 target sites and accumulation of 5-hydroxymethylcytosine (5hmC), along with promoter demethylation and activation of the Dux double-homeobox gene. In the absence of SMCHD1, ES cells acquire a two-cell (2c) embryo-like state characterized by activation of an early embryonic transcriptome that is substantially imposed by Dux Using Smchd1/Tet1/Tet2/Tet3 quadruple-knockout cells, we show that DNA demethylation, activation of Dux, and other genes upon SMCHD1 loss depend on TET proteins. These data identify SMCHD1 as an antagonist of the 2c-like state of ES cells and of TET-mediated DNA demethylation.


Global profiling of distinct cysteine redox forms reveals wide-ranging redox regulation in C. elegans.

  • Jin Meng‎ et al.
  • Nature communications‎
  • 2021‎

Post-translational changes in the redox state of cysteine residues can rapidly and reversibly alter protein functions, thereby modulating biological processes. The nematode C. elegans is an ideal model organism for studying cysteine-mediated redox signaling at a network level. Here we present a comprehensive, quantitative, and site-specific profile of the intrinsic reactivity of the cysteinome in wild-type C. elegans. We also describe a global characterization of the C. elegans redoxome in which we measured changes in three major cysteine redox forms after H2O2 treatment. Our data revealed redox-sensitive events in translation, growth signaling, and stress response pathways, and identified redox-regulated cysteines that are important for signaling through the p38 MAP kinase (MAPK) pathway. Our in-depth proteomic dataset provides a molecular basis for understanding redox signaling in vivo, and will serve as a valuable and rich resource for the field of redox biology.


Morusin and mulberrin extend the lifespans of yeast and C. elegans via suppressing nutrient-sensing pathways.

  • Pingkang Xu‎ et al.
  • GeroScience‎
  • 2023‎

Compounds with lifespan extension activity are rare, although increasing research efforts have been invested in this field to find ways to extend healthy lifespan. By applying a yeast-based high-throughput assay to identify the chronological lifespan extension activity of mulberry extracts rapidly, we demonstrated that a group of prenylated flavones, particularly morusin and mulberrin, could extend the chronological lifespan of budding yeast via a nutrient-dependent regime by at least partially targeting SCH9. Their antiaging activity could be extended to C. elegans by promoting its longevity, dependent on the full functions of genes akt-1 or akt-2. Moreover, additional benefits were observed from morusin- and mulberrin-treated worms, including increased reproduction without the influence of worm health (pumping rate, pumping decline, and reproduction span). In the human HeLa cell model, morusin and mulberrin inhibited the phosphorylation of p70S6K1, promoted autophagy, and slowed cell senescence. The molecular docking study showed that mulberrin and morusin bind to the same pocket of p70S6K1. Collectively, our findings open up a potential class of prenylated flavones performing their antiaging activity via nutrient-sensing pathways.


A new CAM6 + DART reanalysis with surface forcing from CAM6 to other CESM models.

  • Kevin Raeder‎ et al.
  • Scientific reports‎
  • 2021‎

An ensemble Kalman filter reanalysis has been archived in the Research Data Archive at the National Center for Atmospheric Research. It used a CAM6 configuration of the Community Earth System Model (CESM), several million observations per day, and the Data Assimilation Research Testbed (DART). The data saved from this global, [Formula: see text] resolution, 80 member ensemble span 2011-2019. They include ensembles of: sub-daily, real world, atmospheric forcing for use by all of the nonatmospheric models of CESM; weekly, CAM6, restart file sets; 6 hourly, prior hindcast estimates of the assimilated observations; 6 hourly, land model, plant growth variables, and 6 hourly, ensemble mean, gridded, atmospheric analyses. This data can be used for hindcast studies and data assimilation using component models of CESM; CAM6, CLM5, CICE5, POP2. MOM6, MOSART, and CISM; and non-CESM Earth system models. This large dataset (~ 120 Tb) has a unique combination of a large ensemble, high frequency, and multiyear time span, which provides opportunities for robust statistical analysis and use as a machine learning training dataset.


Mild mitochondrial impairment enhances innate immunity and longevity through ATFS-1 and p38 signaling.

  • Juliane C Campos‎ et al.
  • EMBO reports‎
  • 2021‎

While mitochondrial function is essential for life in all multicellular organisms, a mild impairment of mitochondrial function can extend longevity in model organisms. By understanding the molecular mechanisms involved, these pathways might be targeted to promote healthy aging. In studying two long-lived mitochondrial mutants in C. elegans, we found that disrupting subunits of the mitochondrial electron transport chain results in upregulation of genes involved in innate immunity, which is driven by the mitochondrial unfolded protein response (mitoUPR) but also dependent on the canonical p38-mediated innate immune signaling pathway. Both of these pathways are required for the increased resistance to bacterial pathogens and extended longevity of the long-lived mitochondrial mutants, as is the FOXO transcription factor DAF-16. This work demonstrates that both the p38-mediated innate immune signaling pathway and the mitoUPR act in concert on the same innate immunity genes to promote pathogen resistance and longevity and that input from the mitochondria can extend longevity by signaling through these pathways. This indicates that multiple evolutionarily conserved genetic pathways controlling innate immunity also function to modulate lifespan.


Cell State of Origin Impacts Development of Distinct Endometriosis-Related Ovarian Carcinoma Histotypes.

  • Ian Beddows‎ et al.
  • Cancer research‎
  • 2024‎

Clear cell ovarian carcinoma (CCOC) and endometrioid ovarian carcinoma (ENOC) are ovarian carcinoma histotypes, which are both thought to arise from ectopic endometrial (or endometrial-like) cells through an endometriosis intermediate. How the same cell type of origin gives rise to two morphologically and biologically different histotypes has been perplexing, particularly given that recurrent genetic mutations are common to both and present in nonmalignant precursors. We used RNA transcription analysis to show that the expression profiles of CCOC and ENOC resemble those of normal endometrium at secretory and proliferative phases of the menstrual cycle, respectively. DNA methylation at the promoter of the estrogen receptor (ER) gene (ESR1) was enriched in CCOC, which could potentially lock the cells in the secretory state. Compared with normal secretory-type endometrium, CCOC was further defined by increased expression of cysteine and glutathione synthesis pathway genes and downregulation of the iron antiporter, suggesting iron addiction and highlighting ferroptosis as a potential therapeutic target. Overall, these findings suggest that while CCOC and ENOC arise from the same cell type, these histotypes likely originate from different cell states. This "cell state of origin" model may help to explain the presence of histologic and molecular cancer subtypes arising in other organs.


Targeting Mycobacterium tuberculosis Sensitivity to Thiol Stress at Acidic pH Kills the Bacterium and Potentiates Antibiotics.

  • Garry B Coulson‎ et al.
  • Cell chemical biology‎
  • 2017‎

Mycobacterium tuberculosis (Mtb) must sense and adapt to immune pressures such as acidic pH during pathogenesis. The goal of this study was to isolate compounds that inhibit acidic pH resistance, thus defining virulence pathways that are vulnerable to chemotherapy. Here, we report that the compound AC2P36 selectively kills Mtb at acidic pH and potentiates the bactericidal activity of isoniazid, clofazimine, and diamide. We show that AC2P36 activity is associated with thiol stress and causes an enhanced accumulation of intracellular reactive oxygen species at acidic pH. Mechanism of action studies demonstrate that AC2P36 directly depletes Mtb thiol pools, with enhanced depletion of free thiols at acidic pH. These findings support that Mtb is especially vulnerable to thiol stress at acidic pH and that chemical depletion of thiol pools is a promising target to promote Mtb killing and potentiation of antimicrobials.


Elizabethkingia anophelis: Physiologic and Transcriptomic Responses to Iron Stress.

  • Shicheng Chen‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

In this study, we investigated the global gene expression responses of Elizabethkingia anophelis to iron fluxes in the midgut of female Anopheles stephensi mosquitoes fed sucrose or blood, and in iron-poor or iron-rich culture conditions. Of 3,686 transcripts revealed by RNAseq technology, 218 were upregulated while 112 were down-regulated under iron-poor conditions. Hemolysin gene expression was significantly repressed when cells were grown under iron-rich or high temperature (37°C) conditions. Furthermore, hemolysin gene expression was down-regulated after a blood meal, indicating that E. anophelis cells responded to excess iron and its associated physiological stress by limiting iron loading. By contrast, genes encoding respiratory chain proteins were up-regulated under iron-rich conditions, allowing these iron-containing proteins to chelate intracellular free iron. In vivo studies showed that growth of E. anophelis cells increased 3-fold in blood-fed mosquitoes over those in sucrose-fed ones. Deletion of siderophore synthesis genes led to impaired cell growth in both iron-rich and iron-poor media. Mutants showed more susceptibility to H2O2 toxicity and less biofilm formation than did wild-type cells. Mosquitoes with E. anophelis experimentally colonized in their guts produced more eggs than did those treated with erythromycin or left unmanipulated, as controls. Results reveal that E. anophelis bacteria respond to varying iron concentration in the mosquito gut, harvest iron while fending off iron-associated stress, contribute to lysis of red blood cells, and positively influence mosquito host fecundity.


Nanoliposome-Mediated Encapsulation of Chlorella Oil for the Development of a Controlled-Release Lipid-Lowering Formulation.

  • Lanlan Tu‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2024‎

Chlorella oil nanoliposomes (CO-NLP) were synthesized through ultrasonic injection with ethanol, and their physicochemical properties and hypolipidemic efficacy were systematically investigated. The results revealed that the mean particle size of CO-NLP was 86.90 nm and the encapsulation efficiency (EE) was 92.84%. Storage conditions at 4 °C were conducive to the stability of CO-NLP, maintaining an EE of approximately 90% even after 10 days of storage. The release profile of CO-NLP adhered more closely to the first-order kinetic model during in vitro assessments, exhibiting a slower release rate compared to free microalgae oil. In simulated in vitro digestion experiments, lipolytic reactions of CO-NLP were observed during intestinal digestion subsequent to nanoliposome administration. Notably, the inhibitory effect of CO-NLP on cholesterol esterase activity was measured at 85.42%. Additionally, the average fluorescence intensity of nematodes in the CO-NLP group was 52.17% lower than in the control group at a CO-NLP concentration of 500 μg/mL, which suggests a pronounced lipid-lowering effect of CO-NLP. Therefore, the CO-NLP exhibited characteristics of small and uniform particle size, elevated storage stability, gradual release during intestinal digestion, and a noteworthy hypolipidemic effect. These findings designate CO-NLP as a novel lipid-lowering active product, demonstrating potential for the development of functional foods.


Drosophila muller f elements maintain a distinct set of genomic properties over 40 million years of evolution.

  • Wilson Leung‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2015‎

The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25-50%) than euchromatic reference regions (3-11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11-27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4-3.6 vs. 8.4-8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu.


Evaluation of whole-genome DNA methylation sequencing library preparation protocols.

  • Jacob Morrison‎ et al.
  • Epigenetics & chromatin‎
  • 2021‎

With rapidly dropping sequencing cost, the popularity of whole-genome DNA methylation sequencing has been on the rise. Multiple library preparation protocols currently exist. We have performed 22 whole-genome DNA methylation sequencing experiments on snap frozen human samples, and extensively benchmarked common library preparation protocols for whole-genome DNA methylation sequencing, including three traditional bisulfite-based protocols and a new enzyme-based protocol. In addition, different input DNA quantities were compared for two kits compatible with a reduced starting quantity. In addition, we also present bioinformatic analysis pipelines for sequencing data from each of these library types.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: