Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 30 papers

Enhanced autophagy contributes to protective effects of IL-22 against acetaminophen-induced liver injury.

  • Ruidong Mo‎ et al.
  • Theranostics‎
  • 2018‎

Acute or acute-on-chronic liver failure is a leading cause of death in liver diseases without effective treatment. Interleukin-22 (IL-22) is currently in clinical trials for the treatment of severe alcoholic hepatitis, but the underlying mechanisms remain to be explored. Autophagy plays a critical role in alleviating liver injury. The aim of the current study is to explore the role of autophagy in IL-22-mediated hepato-protective effect against acetaminophen (APAP)-induced liver injury. Methods: A model of acute liver injury induced by APAP was used in vivo. IL-22 was administrated to the APAP-treated mice. Hepatocytes were pre-incubated with IL-22, followed by exposure to APAP for in vitro analyses. Results: IL-22 administration significantly reduced serum ALT and AST, hepatic reactive oxygen species, and liver necrosis in APAP-challenged mice. APAP treatment increased hepatic autophagosomes, which was further intensified by IL-22 co-treatment. Hepatic LC3-II was moderately upregulated after APAP administration without obvious alteration of phosphorylation of AMP-activated kinase (p-AMPK). IL-22 pretreatment significantly upregulated hepatic LC3-II and p-AMPK in APAP-treated mice. IL-22 also alleviated APAP-induced cytotoxicity and upregulated LC3-II and p-AMPK expression in cultured hepatocytes treated with APAP in vitro. When p-AMPK was blocked with compound C (an AMPK inhibitor), IL-22-mediated LC3-II conversion and protection against APAP-induced cytotoxicity was weakened. Conclusions: Enhanced AMPK-dependent autophagy contributes to protective effects of IL-22 against APAP-induced liver injury.


Msh2 ATPase activity is essential for somatic hypermutation at a-T basepairs and for efficient class switch recombination.

  • Alberto Martin‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

Somatic hypermutation (SHM) and class switch recombination (CSR) are initiated by activation-induced cytidine deaminase-mediated cytidine deamination of immunoglobulin genes. MutS homologue (Msh) 2-/- mice have reduced A-T mutations and CSR. This suggests that Msh2 may play a role in repairing activation-induced cytidine deaminase-generated G-U mismatches. However, because Msh2 not only initiates mismatch repair but also has other functions, such as signaling for apoptosis, it is not known which activity of Msh2 is responsible for the effects observed, and consequently, many models have been proposed. To further dissect the role of Msh2 in SHM and CSR, mice with a "knockin" mutation in the Msh2 gene that inactivates the adenosine triphosphatase domain were examined. This mutation (i.e., Msh2G674A), which does not affect apoptosis signaling, allows mismatches to be recognized but prevents Msh2 from initiating mismatch repair. Here, we show that, similar to Msh2-/- mice, SHM in Msh2G674A mice is biased toward G-C mutations. However, CSR is partially reduced, and switch junctions are more similar to those of postmeiotic segregation 2-/- mice than to Msh2-/- mice. These results indicate that Msh2 adenosine triphosphatase activity is required for A-T mutations, and suggest that Msh2 has more than one role in CSR.


Examination of Msh6- and Msh3-deficient mice in class switching reveals overlapping and distinct roles of MutS homologues in antibody diversification.

  • Ziqiang Li‎ et al.
  • The Journal of experimental medicine‎
  • 2004‎

Somatic hypermutation and class switch recombination (CSR) contribute to the somatic diversification of antibodies. It has been shown that MutS homologue (Msh)6 (in conjunction with Msh2) but not Msh3 is involved in generating A/T base substitutions in somatic hypermutation. However, their roles in CSR have not yet been reported. Here we show that Msh6(-)(/)(-) mice have a decrease in CSR, whereas Msh3(-)(/)(-) mice do not. When switch regions were analyzed for mutations, deficiency in Msh6 was associated with an increase in transition mutations at G/C basepairs, mutations at RGYW/WRCY hotspots, and a small increase in the targeting of G/C bases. In addition, Msh6(-)(/)(-) mice exhibited an increase in the targeting of recombination sites to GAGCT/GGGGT consensus repeats and hotspots in Sgamma3 but not in Smicro. In contrast to Msh2(-)(/)(-) mice, deficiency in Msh6 surprisingly did not change the characteristics of Smicro-Sgamma3 switch junctions. However, Msh6(-)(/)(-) mice exhibited a change in the positioning of Smicro and Sgamma3 junctions. Although none of these changes were seen in Msh3(-)(/)(-) mice, they had a higher percentage of large inserts in their switch junctions. Together, our data suggest that MutS homologues Msh2, Msh3, and Msh6 play overlapping and distinct roles during antibody diversification processes.


MSH2/MSH6 complex promotes error-free repair of AID-induced dU:G mispairs as well as error-prone hypermutation of A:T sites.

  • Sergio Roa‎ et al.
  • PloS one‎
  • 2010‎

Mismatch repair of AID-generated dU:G mispairs is critical for class switch recombination (CSR) and somatic hypermutation (SHM) in B cells. The generation of a previously unavailable Msh2(-/-)Msh6(-/-) mouse has for the first time allowed us to examine the impact of the complete loss of MutSalpha on lymphomagenesis, CSR and SHM. The onset of T cell lymphomas and the survival of Msh2(-/-)Msh6(-/-) and Msh2(-/-)Msh6(-/-)Msh3(-/-) mice are indistinguishable from Msh2(-/-) mice, suggesting that MSH2 plays the critical role in protecting T cells from malignant transformation, presumably because it is essential for the formation of stable MutSalpha heterodimers that maintain genomic stability. The similar defects on switching in Msh2(-/-), Msh2(-/-)Msh6(-/-) and Msh2(-/-)Msh6(-/-)Msh3(-/-) mice confirm that MutSalpha but not MutSbeta plays an important role in CSR. Analysis of SHM in Msh2(-/-)Msh6(-/-) mice not only confirmed the error-prone role of MutSalpha in the generation of strand biased mutations at A:T bases, but also revealed an error-free role of MutSalpha when repairing some of the dU:G mispairs generated by AID on both DNA strands. We propose a model for the role of MutSalpha at the immunoglobulin locus where the local balance of error-free and error-prone repair has an impact in the spectrum of mutations introduced during Phase 2 of SHM.


Forced expression of AID facilitates the isolation of class switch variants from hybridoma cells.

  • Maria D Iglesias-Ussel‎ et al.
  • Journal of immunological methods‎
  • 2006‎

Monoclonal antibodies are used in the treatment and diagnosis of diseases and to study the protective and adverse functions of antibodies in vitro and in vivo. Since the isotype determines the effector function, half-life in the serum and distribution throughout the body, it would be useful to have a battery of antibodies with the same binding site associated with different isotypes. However, since hybridomas switch isotypes at very low frequencies in tissue culture, it has been difficult and very labor intensive to isolate panels of class switch variants. We show here that stable transfection of activation-induced cytidine deaminase (AID) in hybridomas increased their frequency of switching to a level that greatly facilitated the isolation of subclones expressing monoclonal antibodies of different isotypes. Although forced expression of AID also increased the frequency of somatic hypermutation in the immunoglobulin variable regions that encode the antigen binding site, antigen recognition was retained in the isotype switched antibodies.


Exploring the molecular mechanism of action of Polygonum capitatum Buch-Ham. ex D. Don for the treatment of bacterial prostatitis based on network pharmacology and experimental verification.

  • Shanshan Fan‎ et al.
  • Journal of ethnopharmacology‎
  • 2022‎

Polygonum capitatum Buch-Ham. ex D. Don (CNPC2009), a traditional Miao-national herbal medicine, has been widely used with considerable therapeutic efficacy in the treatment of various urologic disorders including prostatitis. However, the molecular mechanism of action (MOA) remains unclear.


Pharmacokinetics of gallic acid and protocatechuic acid in humans after dosing with Relinqing (RLQ) and the potential for RLQ-perpetrated drug-drug interactions on organic anion transporter (OAT) 1/3.

  • Ziqiang Li‎ et al.
  • Pharmaceutical biology‎
  • 2021‎

Relinqing granules (RLQ) are being used alone or in combination with antibacterial drugs to treat urological disorders.


PTSD of Chinese nurses in the normalisation of COVID-19 pandemic prevention and control: Prevalence and correlates.

  • Xiaofei Mao‎ et al.
  • Journal of global health‎
  • 2023‎

Though the severe prevention and control measures faced by Chinese nurses had changed during the normalisation stage of the coronavirus 2019 (COVID-19) pandemic, they still worked under great stress. Due to a lack of related evidence, we aimed to investigate the prevalence and correlates of post-traumatic stress disorder (PTSD) among Chinese nurses during the normalisation of COVID-19 pandemic prevention and control measures.


An Asian study on clinical and psychological factors associated with personal recovery in people with psychosis.

  • Madeline Lim‎ et al.
  • BMC psychiatry‎
  • 2019‎

Despite the rising recognition of personal recovery, there is a lack of research on personal recovery in individuals with psychosis in Singapore. This study aims to evaluate the psychometric properties of the QPR-15 using the CHIME personal recovery framework and to examine its associations with clinical recovery factors.


Pharmacokinetic herb-drug interactions: Altered systemic exposure and tissue distribution of ciprofloxacin, a substrate of multiple transporters, after combined treatment with Polygonum capitatum Buch.-Ham. ex D. Don extracts.

  • Ziqiang Li‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Background: Combination of Polygonum capitatum Buch.-Ham. ex D. Don extract (PCE) and ciprofloxacin (CIP) was commonly prescribed in the treatment of urinary tract infections. Their pharmacokinetic herb-drug interactions (HDIs) were focused in this study to assess potential impact on the safety and effectiveness. Methods: A randomized, three-period, crossover trial was designed to study the pharmacokinetic HDI between PCE and CIP in healthy humans. Their pharmacokinetic- and tissue distribution-based HDIs were also evaluated in rats. Gallic acid (GA) and protocatechuic acid (PCA) were chosen as PK-markers of PCE in humans and rats. Potential drug interaction mechanisms were revealed by assessing the effects of PCE on the activity and expression of multiple transporters, including OAT1/3, OCT2, MDR1, and BCRP. Results: Concurrent use of PCE substantially reduced circulating CIP (approximately 40%-50%) in humans and rats, while CIP hardly changed circulating GA and PCA. PCE significantly increased the tissue distribution of CIP in the prostate and testis of rats, but decreased in liver and lungs. Meanwhile, CIP significantly increased the tissue distribution of GA or PCA in the prostate and testis of rats, but decreased in kidney and heart. In the transporter-mediated in vitro HDI, GA and PCA presented inhibitory effects on OAT1/3 and inductive effects on MDR1 and BCRP. Conclusion: Multiple transporter-mediated HDI contributes to effects of PCE on the reduced systemic exposure and altered tissue distribution of CIP. More attention should be paid on the potential for PCE-perpetrated interactions.


Metabolomics-Based Clinical Efficacy and Effect on the Endogenous Metabolites of Tangzhiqing Tablet, a Chinese Patent Medicine for Type 2 Diabetes Mellitus with Hypertriglyceridemia.

  • Jia Liu‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2018‎

Tangzhiqing tablet (TZQ) is derived from Tangzhiqing formula, which has been used to regulate glucose and lipid metabolism in China for hundreds of years. However, as a new Chinese patent medicine, its clinical indication is not clear. To explore the clinical indication and effect on the patients with type 2 diabetes mellitus (T2DM), a pilot clinical trial and metabolomics study were carried out. In the clinical study, T2DM patients were divided into three groups and treated with TZQ, placebo, or acarbose for 12 weeks, respectively. The metabolomic study based on UPLC Q-TOF MS was performed including patients with hypertriglyceridemia in TZQ and placebo groups and healthy volunteers. The clinical results showed that TZQ could reduce glycosylated hemoglobin (HbA1c) and fasting insulin. For patients with hypertriglyceridemia in TZQ group, the levels of HbA1c all decreased and were correlated with the baseline level of triglyceride. Metabonomics data showed a significant difference between patients and healthy volunteers, and 17 biomarkers were identified. After 12-week treatment with TZQ, 11 biomarkers decreased significantly (p<0.05), suggesting that TZQ could improve the metabolomic abnormalities in these participants. In conclusion, the clinical indication of TZQ was T2DM with hypertriglyceridemia, and its target was related to glycerophospholipid metabolism.


Structural basis for the neutralization of MERS-CoV by a human monoclonal antibody MERS-27.

  • Xiaojuan Yu‎ et al.
  • Scientific reports‎
  • 2015‎

The recently reported Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory illness in humans with an approximately 30% mortality rate. The envelope spike glycoprotein on the surface of MERS-CoV mediates receptor binding, membrane fusion, and viral entry. We previously reported two human monoclonal antibodies that target the receptor binding domain (RBD) of the spike and exhibit strong neutralization activity against live and pesudotyped MERS-CoV infection. Here we determined the crystal structure of MERS-CoV RBD bound to the Fab fragment of MERS-27 antibody at 3.20 Å resolution. The MERS-27 epitope in the RBD overlaps with the binding site of the MERS-CoV receptor DPP4. Further biochemical, viral entry, and neutralization analyses identified two critical residues in the RBD for both MERS-27 recognition and DPP4 binding. One of the residues, Trp535, was found to function as an anchor residue at the binding interface with MERS-27. Upon receptor binding, Trp535 interacts with the N-linked carbohydrate moiety of DPP4. Thus, MERS-27 inhibits MERS-CoV infection by directly blocking both protein-protein and protein-carbohydrate interactions between MERS-CoV RBD and DPP4. These results shed light on the molecular basis of MERS-27 neutralization and will assist in the optimization of MERS-27 as a tool to combat MERS-CoV infection.


COVID-19 vaccines in patients with decompensated cirrhosis: a retrospective cohort on safety data and risk factors associated with unvaccinated status.

  • Zhujun Cao‎ et al.
  • Infectious diseases of poverty‎
  • 2022‎

Safety data reported from the large-scale clinical trials of the coronavirus disease 2019 (COVID-19) vaccine are extremely limited in patients with decompensated cirrhosis. The vaccination campaign in this specific population could be difficult due to uncertainty about the adverse events following vaccination. We aimed to assessed the COVID-19 vaccination rate, factors associated with unvaccinated status, and the adverse events following vaccination in patients with decompensated cirrhosis.


Long Non-coding RNA NEAT1 Alleviates Acute-on-Chronic Liver Failure Through Blocking TRAF6 Mediated Inflammatory Response.

  • Yumin Xu‎ et al.
  • Frontiers in physiology‎
  • 2019‎

Long non-coding RNAs (lncRNAs) have recently been tightly linked to plenty of human diseases. However, knowledge of acute-on-chronic liver failure (ACLF) related lncRNAs remains insufficient. In this work, we studied the role of the lncRNA nuclear enriched abundant transcript 1 (NEAT1) in the pathogenesis of ACLF.


Mechanistic insights into the effects of SREBP1c on hepatic stellate cell and liver fibrosis.

  • Shengyan Su‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

Sterol regulatory element-binding protein 1c (SREBP1c) plays key roles in maintenance of hepatic stellate cell (HSC) quiescence. The present researches investigated the mechanisms underlying the effects of SREBP1c on HSCs and liver fibrogenesis by HSC-targeted overexpression of the active SREBP1c using adenovirus in vitro and in vivo. Results demonstrated that SREBP1c exerted inhibitory effects on TAA-induced liver fibrosis. SREBP1c down-regulated TGFβ1 level in liver, reduced the receptors for TGFβ1 and PDGFβ, and interrupted the signalling pathways of Smad3 and Akt1/2/3 but not ERK1/2 in HSCs. SREBP1c also led to the decreases in the protein levels of the bromodomain-containing chromatin-modifying factor bromodomain protein 4, methionine adenosyltransferase 2B (MAT2B) and TIMP1 in HSCs. In vivo activated HSCs did not express cyclin D1 and cyclin E1 but SREBP1c down-regulated both cyclins in vitro. SREBP1c elevated PPARγ and MMP1 protein levels in the model of liver fibrosis. The effect of SREBP1c on MAT2B expression was associated with its binding to MAT2B1 promoter. Taken together, the mechanisms underlying the effects of SREBP1c on HSC activation and liver fibrosis were involved in its influences on TGFβ1 level, the receptors for TGFβ1 and PDGFβ and their downstream signalling, and the molecules for epigenetic regulation of genes.


Pharmacokinetic herb-disease-drug interactions: Effect of ginkgo biloba extract on the pharmacokinetics of pitavastatin, a substrate of Oatp1b2, in rats with non-alcoholic fatty liver disease.

  • Ziqiang Li‎ et al.
  • Journal of ethnopharmacology‎
  • 2021‎

Ginkgo biloba L. is a traditional Chinese medicine for hyper lipaemia. Ginkgo flavonols and terpene lactones are responsible for the lipid-lowering effect in non-alcoholic fatty liver disease (NAFLD). However, the pharmacokinetics of ginkgo flavonols and terpene lactones in NAFLD was not clarified.


NOP2-mediated m5C Modification of c-Myc in an EIF3A-Dependent Manner to Reprogram Glucose Metabolism and Promote Hepatocellular Carcinoma Progression.

  • Hao Zhang‎ et al.
  • Research (Washington, D.C.)‎
  • 2023‎

Mitochondrial dysfunction and glycolysis activation are improtant hallmarks of hepatocellular carcinoma (HCC). NOP2 is an S-adenosyl-L-methionine-dependent methyltransferase that regulates the cell cycle and proliferation activities. In this study, found that NOP2 contributes to HCC progression by promoting aerobic glycolysis. Our results revealed that NOP2 was highly expressed in HCC and that it was associated with unfavorable prognosis. NOP2 knockout in combination with sorafenib enhanced sorafenib sensitivity, which, in turn, led to marked tumor growth inhibition. Mechanistically, we identified that NOP2 regulates the c-Myc expression in an m5C-modification manner to promote glycolysis. Moreover, our results revealed that m5C methylation induced c-Myc mRNA degradation in an eukaryotic translation initiation factor 3 subunit A (EIF3A)-dependent manner. In addition, NOP2 was found to increase the expression of the glycolytic genes LDHA, TPI1, PKM2, and ENO1. Furthermore, MYC associated zinc finger protein (MAZ) was identified as the major transcription factor that directly controlled the expression of NOP2 in HCC. Notably, in a patient-derived tumor xenograft (PDX) model, adenovirus-mediated knockout of NOP2 maximized the antitumor effect and prolonged the survival of PDX-bearing mice. Our cumulative findings revealed the novel signaling pathway MAZ/NOP2/c-Myc in HCC and uncovered the important roles of NOP2 and m5C modifications in metabolic reprogramming. Therefore, targeting the MAZ/NOP2/c-Myc signaling pathway is suggested to be a potential therapeutic strategy for the treatment of HCC.


Detection of chromatin-associated single-stranded DNA in regions targeted for somatic hypermutation.

  • Diana Ronai‎ et al.
  • The Journal of experimental medicine‎
  • 2007‎

After encounter with antigen, the antibody repertoire is shaped by somatic hypermutation (SHM), which leads to an increase in the affinity of antibodies for the antigen, and class-switch recombination (CSR), which results in a change in the effector function of antibodies. Both SHM and CSR are initiated by activation-induced cytidine deaminase (AID), which deaminates deoxycytidine to deoxyuridine in single-stranded DNA (ssDNA). The precise mechanism responsible for the formation of ssDNA in V regions undergoing SHM has yet to be experimentally established. In this study, we searched for ssDNA in mutating V regions in which DNA-protein complexes were preserved in the context of chromatin in human B cell lines and in primary mouse B cells. We found that V regions that undergo SHM were enriched in short patches of ssDNA, rather than R loops, on both the coding and noncoding strands. Detection of these patches depended on the presence of DNA-associated proteins and required active transcription. Consistent with this, we found that both DNA strands in the V region were transcribed. We conclude that regions of DNA that are targets of SHM assemble protein-DNA complexes in which ssDNA is exposed, making it accessible to AID.


Enhancer of zeste homolog 2-catalysed H3K27 trimethylation plays a key role in acute-on-chronic liver failure via TNF-mediated pathway.

  • Tianhui Zhou‎ et al.
  • Cell death & disease‎
  • 2018‎

Acute-on-chronic liver failure is mainly due to host immunity self-destruction. The histone H3 lysine 27 (H3K27) trimethylating enzyme, enhancer of zeste homolog 2 (EZH2) mediates epigenetic silencing of gene expression and regulates immunity, also involves pathogenesis of several liver diseases. The current study was to determine the role of methyltransferase EZH2 and its catalysed H3K27 trimethylation (H3K27me3) in liver failure, and to further investigate the potential target for liver failure treatment. EZH2 and its catalysed H3K27me3 were determined in peripheral blood mononuclear cells (PBMC) from liver failure patients and Kupffer cells from experimental mice. Furthermore, GSK126 (an inhibitor for EZH2 trimethylation function) was applied in liver failure mice in vivo, and lipopolysaccharide-stimulated mononuclear cells in vitro. EZH2 and H3K27me3 were significantly upregulated in human PBMC from liver failure patients or murine Kupffer cells from the liver failure animals, respectively. GSK126 ameliorated disease severity in liver failure mice, which maybe attribute to down-regulate circulating and hepatic proinflammatory cytokines, especially TNF via reducing H3K27me3. In-depth chromatin immunoprecipitation analysis unravelled that decreased enrichment of H3K27me3 on Tnf promotor, resulting in TNF elevation in Kupffer cells from liver failure mice. Nuclear factor kappa B (NF-κB) and protein kinase B (Akt) signalling pathways were activated upon lipopolysaccharide stimulation, but attenuated by using GSK126, accompanied with decreased TNF in vitro. In conclusion, EZH2 and H3K27me3 contributed to the pathogenesis of liver failure via triggering TNF and other indispensable proinflammatory cytokines. EZH2 was to modify H3K27me3 enrichment, as well as, activation of the downstream NF-κB and Akt signalling pathways.


A systematic review of the safety and efficacy of rapid titration of quetiapine running header: Rapid titration of Quetiapine- A systematic review.

  • Jing Ling Tay‎ et al.
  • Psychiatry research‎
  • 2019‎

Quetiapine is a second-generation antipsychotic that is most favoured for its low propensity for extrapyramidal side effects. However, Quetiapine requires slow titration, which is disadvantageous. The brief review discussed research that trialled rapid titration of Quetiapine The author searched PubMed, Proquest, Embase, Google Scholar and Google Web using the keyword 'rapid titration' and 'quetiapine'. A total of 18 articles were included. The process, safety and efficacy of rapid titration of Quetiapine was examined. In conclusion, preliminary results appear to show that there is minimal difference in efficacy, between the rapid and traditional titration of Quetiapine. Sedation tended to occur more frequently and earlier among experimental group, and this might render rapid titration of Quetiapine to be suitable for agitated patients. There is a need for more large-scale, multisite, randomized clinical trials to examine the safety and efficacy of rapid titration of Quetiapine.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: