Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 18 papers out of 18 papers

Revisiting avian 'missing' genes from de novo assembled transcripts.

  • Zhong-Tao Yin‎ et al.
  • BMC genomics‎
  • 2019‎

Argument remains as to whether birds have lost genes compared with mammals and non-avian vertebrates during speciation. High quality-reference gene sets are necessary for precisely evaluating gene gain and loss. It is essential to explore new reference transcripts from large-scale de novo assembled transcriptomes to recover the potential hidden genes in avian genomes.


The sodium channel gene family is specifically expressed in hen uterus and associated with eggshell quality traits.

  • Yan-Feng Fan‎ et al.
  • BMC genetics‎
  • 2013‎

Eggshell quality is important for the poultry industry. During eggshell formation a mass of inorganic minerals is deposited. The Sodium Channel (SCNN1) gene family plays an essential role in cation transportation. The objective of this study was to investigate the pattern of expression of members of the SCNN1 gene family, their variation and their effects on eggshell quality.


Elephant transcriptome provides insights into the evolution of eutherian placentation.

  • Zhuo-Cheng Hou‎ et al.
  • Genome biology and evolution‎
  • 2012‎

The chorioallantoic placenta connects mother and fetus in eutherian pregnancies. In order to understand the evolution of the placenta and provide further understanding of placenta biology, we sequenced the transcriptome of a term placenta of an African elephant (Loxodonta africana) and compared these data with RNA sequence and microarray data from other eutherian placentas including human, mouse, and cow. We characterized the composition of 55,910 expressed sequence tag (i.e., cDNA) contigs using our custom annotation pipeline. A Markov algorithm was used to cluster orthologs of human, mouse, cow, and elephant placenta transcripts. We found 2,963 genes are commonly expressed in the placentas of these eutherian mammals. Gene ontology categories previously suggested to be important for placenta function (e.g., estrogen receptor signaling pathway, cell motion and migration, and adherens junctions) were significantly enriched in these eutherian placenta-expressed genes. Genes duplicated in different lineages and also specifically expressed in the placenta contribute to the great diversity observed in mammalian placenta anatomy. We identified 1,365 human lineage-specific, 1,235 mouse lineage-specific, 436 cow lineage-specific, and 904 elephant-specific placenta-expressed (PE) genes. The most enriched clusters of human-specific PE genes are signal/glycoprotein and immunoglobulin, and humans possess a deeply invasive human hemochorial placenta that comes into direct contact with maternal immune cells. Inference of phylogenetically conserved and derived transcripts demonstrates the power of comparative transcriptomics to trace placenta evolution and variation across mammals and identified candidate genes that may be important in the normal function of the human placenta, and their dysfunction may be related to human pregnancy complications.


Genome-wide association study of bone quality and feed efficiency-related traits in Pekin ducks.

  • Guang-Sheng Li‎ et al.
  • Genomics‎
  • 2020‎

Feeding and bone traits are vital for breeding and reproduction in the commercial duck industry. In this study, we performed a genome-wide association study for feeding and bone traits in a population of 540 lean-type Pekin ducks, followed by genotyping-by-sequencing procedures. The genetic parameters of feeding and bone traits were also estimated using genomic information. In total, seventy-eight significant SNPs were determined, and eleven of them reached the genome-wide significant level for 7 traits except for body weight at 42-day old. A peak of genome-wide significant SNPs was detected on chromosome 2 for feed conversion ratio (P-value = 7.46E-11), and the top SNP (P-value = 2.23E-08) for bone-breaking strength was also obtained in the upstream of gene RAPGEF5. This study provided a list of novel markers and candidate genes associated with feeding and bone traits in Pekin ducks, which could contribute to the genetic selection in duck breeding.


Genome-Wide Association Study of Growth and Feeding Traits in Pekin Ducks.

  • Feng Zhu‎ et al.
  • Frontiers in genetics‎
  • 2019‎

Growth rate and feeding efficiency are the most important economic traits for meat animals. Pekin duck is one of the major global breeds of meat-type duck. This study aims to identify QTL for duck growth and feeding efficiency traits in order to assist artificial selection. In this study, the growth and feeding related phenotypes of 639 Pekin ducks were recorded, and each individual genotype was evaluated using a genotyping-by-sequencing (GBS) protocol. The genetic parameters for growth and feeding efficiency related traits were estimated. Genome-wide association analysis (GWAS) was then performed for these traits. In total, 15 non-overlapping QTLs for the measured traits and 12 significant SNPs for feed efficiency traits were discovered using a mixed linear model. The most significant loci of feed intake (FI) is located in a 182Mb region on Chr1, which is downstream of gene RNF17, and can explain 2.3% of the phenotypic variation. This locus is also significantly associated with residual feed intake (RFI), and can explain 3% of this phenotypic variation. Among 12 SNPs associated with the feed conversion ratio (FCR), the most significant SNP (P-value = 1.65E-06), which was located in the region between the 3rd and 4th exon of the SORCS1 gene on Chr6, explained 3% of the phenotypic variance. Using gene-set analysis, a total of two significant genes were detected be associated with RFI on Chr1. This study is the first GWAS for growth and feeding efficiency related traits in ducks. Our results provide a list of candidate genes for marker assisted selection for growth and feeding efficiency, and also help to better understand the genetic mechanisms of feed efficiency and growth in ducks.


Genome-wide association study reveals novel loci associated with feeding behavior in Pekin ducks.

  • Guang-Sheng Li‎ et al.
  • BMC genomics‎
  • 2021‎

Feeding behavior traits are an essential part of livestock production. However, the genetic base of feeding behavior traits remains unclear in Pekin ducks. This study aimed to determine novel loci related to feeding behavior in Pekin ducks.


Full-length transcriptome sequencing from multiple tissues of duck, Anas platyrhynchos.

  • ZhongTao Yin‎ et al.
  • Scientific data‎
  • 2019‎

Duck (Anas platyrhynchos), one of the most economically important waterfowl, is an ideal model for studying the immune protection mechanism of birds. An incomplete duck reference genome and very limited availability of full-length cDNAs has hindered the identification of alternatively spliced transcripts and slowed down many basic studies in ducks. We applied PacBio Iso-Seq technologies to multiple tissues from duck for use in transcriptome sequencing. We obtained 199,993 full-length transcripts and comprehensively annotated these transcripts. 23,755 lncRNAs were predicted from all identified transcripts and 35,031 alternative splicing events, which divided into 5 models, were accurately predicted from 3,346 genes. Our data constitute a large increase in the known number of both lncRNA, and alternatively spliced transcripts of duck and plays an important role in improving current genome annotation. In addition, the data will be extremely useful for functional studies in other birds.


Exploring the effect of the microbiota on the production of duck striped eggs.

  • Zhen Li‎ et al.
  • Poultry science‎
  • 2023‎

The microbiota has received plenty of attention in recent years due to its influence on host health and productivity. The striped eggs have reduced hatching performance and resulted in economic loss. The reasons are still unknown. Microbiota is one of the potentially important factors contributing to striped egg formation. This study investigates the relationship between the microbiota and striped eggs. The litter samples, feed samples, and cloacal swab samples of female ducks that produce striped eggs and normal eggs were performed for microbial diversity and composition using 16S rRNA sequencing. The results showed that there was no significant difference between feed microbiota and cloacal swab microbiota by alpha diversity, whereas, the number of microorganisms in the litter samples of female ducks that produced striped eggs was less than those of female ducks with normal eggs. There were compositional differences in litter microbiota of female ducks between the striped egg and the normal eggs. Among them, the abundance of Staphylococcus, Corynebacterium, and Brevibacterium in the litter of female ducks that produced striped eggs was significantly higher than that produced normal eggs. And these differential bacteria maybe affect the health of female ducks and cause abnormalities in the formation process of duck eggs. Therefore, the reduction of harmful bacteria may protect the reproductive health of female ducks and decrease the proportion of striped eggs. It provides an important reference to explore why female ducks produce striped eggs.


A chromosome-level genome assembly for the Silkie chicken resolves complete sequences for key chicken metabolic, reproductive, and immunity genes.

  • Feng Zhu‎ et al.
  • Communications biology‎
  • 2023‎

A set of high-quality pan-genomes would help identify important genes that are still hidden/incomplete in bird reference genomes. In an attempt to address these issues, we have assembled a de novo chromosome-level reference genome of the Silkie (Gallus gallus domesticus), which is an important avian model for unique traits, like fibromelanosis, with unclear genetic foundation. This Silkie genome includes the complete genomic sequences of well-known, but unresolved, evolutionarily, endocrinologically, and immunologically important genes, including leptin, ovocleidin-17, and tumor-necrosis factor-α. The gap-less and manually annotated MHC (major histocompatibility complex) region possesses 38 recently identified genes, with differentially regulated genes recovered in response to pathogen challenges. We also provide whole-genome methylation and genetic variation maps, and resolve a complex genetic region that may contribute to fibromelanosis in these animals. Finally, we experimentally show leptin binding to the identified leptin receptor in chicken, confirming an active leptin ligand-receptor system. The Silkie genome assembly not only provides a rich data resource for avian genome studies, but also lays a foundation for further functional validation of resolved genes.


The transcriptome landscapes of ovary and three oviduct segments during chicken (Gallus gallus) egg formation.

  • ZhongTao Yin‎ et al.
  • Genomics‎
  • 2020‎

The avian embryo develops within a specialized biological container (eggshell) that contains crucial nutritional compartments (albumen, yolk). We analyzed the transcriptome of ovary and three segments of oviduct, including magnum, isthmus and uterus in the chicken during egg formation. RNA-Seq libraries (42 in total) for ovary and three different parts of the oviduct were sequenced for two different phases of egg formation. We obtained 8365 novel transcripts with an mRNA length longer than 200 bp; of these, 6832 were long intergenic non-coding RNA transcripts. We identified 547 differentially expressed genes in magnum (actively secreting albumen versus inactive) and 585 in uterus (active eggshell calcification versus quiescent). By combining QTL, transcriptome and proteome data, we obtained high quality gene lists for chicken egg formation. This is the first study to describe the ovary and oviduct transcriptomes by mRNA sequencing, and to elucidate the global repertoire of functional genes involved in egg formation.


Genome-wide association study of the level of blood components in Pekin ducks.

  • Feng Zhu‎ et al.
  • Genomics‎
  • 2020‎

Blood components are considered to reflect nutrient metabolism and immune activity in both humans and animals. In this study, we measured 12 blood components in Pekin ducks and performed genome-wide association analysis to identify the QTLs (quantitative trait locus) using a genotyping-by-sequencing strategy. A total of 54 QTLs were identified for blood components. One genome-wide significant QTL for alkaline phosphatase was identified within the intron-region of the OTOG gene (P = 1.31E-07). Moreover, 21 genome-wide significant SNPs for the level of serum cholinesterase were identified on six different scaffolds. In addition, for serum calcium, one genome-wide significant QTL was identified in the upstream region of gene RAB11B. These results provide new markers for functional studies in Pekin ducks, and several candidate genes were identified, which may provide additional insights into specific mechanisms for blood metabolism in ducks and their potential application for duck breeding programs.


High-throughput RNA sequencing reveals structural differences of orthologous brain-expressed genes between western lowland gorillas and humans.

  • Leonard Lipovich‎ et al.
  • The Journal of comparative neurology‎
  • 2016‎

The human brain and human cognitive abilities are strikingly different from those of other great apes despite relatively modest genome sequence divergence. However, little is presently known about the interspecies divergence in gene structure and transcription that might contribute to these phenotypic differences. To date, most comparative studies of gene structure in the brain have examined humans, chimpanzees, and macaque monkeys. To add to this body of knowledge, we analyze here the brain transcriptome of the western lowland gorilla (Gorilla gorilla gorilla), an African great ape species that is phylogenetically closely related to humans, but with a brain that is approximately one-third the size. Manual transcriptome curation from a sample of the planum temporale region of the neocortex revealed 12 protein-coding genes and one noncoding-RNA gene with exons in the gorilla unmatched by public transcriptome data from the orthologous human loci. These interspecies gene structure differences accounted for a total of 134 amino acids in proteins found in the gorilla that were absent from protein products of the orthologous human genes. Proteins varying in structure between human and gorilla were involved in immunity and energy metabolism, suggesting their relevance to phenotypic differences. This gorilla neocortical transcriptome comprises an empirical, not homology- or prediction-driven, resource for orthologous gene comparisons between human and gorilla. These findings provide a unique repository of the sequences and structures of thousands of genes transcribed in the gorilla brain, pointing to candidate genes that may contribute to the traits distinguishing humans from other closely related great apes.


Comparison of carcass and meat quality traits between lean and fat Pekin ducks.

  • Si-Ran Ding‎ et al.
  • Animal bioscience‎
  • 2021‎

According to market demand, meat duck breeding mainly includes 2 breeding directions: lean Pekin duck (LPD) and fat Pekin duck (FPD). The aim of the present study was to compare carcass and meat quality traits between 2 strains, and to provide basic data for guidelines of processing and meat quality improvement.


Selection on the promoter regions plays an important role in complex traits during duck domestication.

  • Zhong-Tao Yin‎ et al.
  • BMC biology‎
  • 2023‎

Identifying the key factors that underlie complex traits during domestication is a great challenge for evolutionary and biological studies. In addition to the protein-coding region differences caused by variants, a large number of variants are located in the noncoding regions containing multiple types of regulatory elements. However, the roles of accumulated variants in gene regulatory elements during duck domestication and economic trait improvement are poorly understood.


Genome-wide association study reveals novel loci associated with body size and carcass yields in Pekin ducks.

  • Meng-Ting Deng‎ et al.
  • BMC genomics‎
  • 2019‎

Pekin duck products have become popular in Asia over recent decades and account for an increasing market share. However, the genetic mechanisms affecting carcass growth in Pekin ducks remain unknown. This study aimed to identify quantitative trait loci affecting body size and carcass yields in Pekin ducks.


Integrating transcriptome, proteome and QTL data to discover functionally important genes for duck eggshell and albumen formation.

  • Fan Zhang‎ et al.
  • Genomics‎
  • 2020‎

Duck egg quality improvement is an essential target for Asian poultry breeding. In total, 15 RNA-Seq libraries (magnum, isthmus, and uterus at two different physiological states) were sequenced from 48 weeks old Pekin ducks. De novo assembly and annotation methods were utilized to generate new reference transcripts. Our results revealed that 1264 and 2517 genes were differentially expressed in magnum and uterus in the presence versus absence of an egg, respectively. We identified 1089 genes that were differentially expressed in isthmus compared to uterus (in both presence and absence of a calcifying egg). We observed that 11 common DEGs were detected in the egg white proteomes of 6 different bird species including domestic Chicken, Duck, Goose, Turkey, Quail, and Pigeon. On the other hand, only one of the top five most highly expressed genes in duck isthmus was in this category for the chicken isthmus (SPINK7). Among the large number of DEGs during eggshell formation in ducks, only 41 genes showed a similar differential expression pattern in both duck and chicken. By combining chicken QTL database, chicken oviduct transcriptome and egg proteome data for five bird species, we have obtained high-quality gene lists for egg formation. This is the first study to elucidate the transcriptomic changes in different duck oviduct segments during egg formation, and to integrate QTL, proteome and transcriptome data to probe the functional genes associated with albumen secretion and eggshell mineralization.


Three chromosome-level duck genome assemblies provide insights into genomic variation during domestication.

  • Feng Zhu‎ et al.
  • Nature communications‎
  • 2021‎

Domestic ducks are raised for meat, eggs and feather down, and almost all varieties are descended from the Mallard (Anas platyrhynchos). Here, we report chromosome-level high-quality genome assemblies for meat and laying duck breeds, and the Mallard. Our new genomic databases contain annotations for thousands of new protein-coding genes and recover a major percentage of the presumed "missing genes" in birds. We obtain the entire genomic sequences for the C-type lectin (CTL) family members that regulate eggshell biomineralization. Our population and comparative genomics analyses provide more than 36 million sequence variants between duck populations. Furthermore, a mutant cell line allows confirmation of the predicted anti-adipogenic function of NR2F2 in the duck, and uncovered mutations specific to Pekin duck that potentially affect adipose deposition. Our study provides insights into avian evolution and the genetics of oviparity, and will be a rich resource for the future genetic improvement of commercial traits in the duck.


SNP discovery and genotyping using Genotyping-by-Sequencing in Pekin ducks.

  • Feng Zhu‎ et al.
  • Scientific reports‎
  • 2016‎

Genomic selection and genome-wide association studies need thousands to millions of SNPs. However, many non-model species do not have reference chips for detecting variation. Our goal was to develop and validate an inexpensive but effective method for detecting SNP variation. Genotyping by sequencing (GBS) can be a highly efficient strategy for genome-wide SNP detection, as an alternative to microarray chips. Here, we developed a GBS protocol for ducks and tested it to genotype 49 Pekin ducks. A total of 169,209 SNPs were identified from all animals, with a mean of 55,920 SNPs per individual. The average SNP density reached 1156 SNPs/MB. In this study, the first application of GBS to ducks, we demonstrate the power and simplicity of this method. GBS can be used for genetic studies in to provide an effective method for genome-wide SNP discovery.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: