Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

A proteomic landscape of diffuse-type gastric cancer.

  • Sai Ge‎ et al.
  • Nature communications‎
  • 2018‎

The diffuse-type gastric cancer (DGC) is a subtype of gastric cancer with the worst prognosis and few treatment options. Here we present a dataset from 84 DGC patients, composed of a proteome of 11,340 gene products and mutation information of 274 cancer driver genes covering paired tumor and nearby tissue. DGC can be classified into three subtypes (PX1-3) based on the altered proteome alone. PX1 and PX2 exhibit dysregulation in the cell cycle and PX2 features an additional EMT process; PX3 is enriched in immune response proteins, has the worst survival, and is insensitive to chemotherapy. Data analysis revealed four major vulnerabilities in DGC that may be targeted for treatment, and allowed the nomination of potential immunotherapy targets for DGC patients, particularly for those in PX3. This dataset provides a rich resource for information and knowledge mining toward altered signaling pathways in DGC and demonstrates the benefit of proteomic analysis in cancer molecular subtyping.


Molecular Characterization and Clinical Relevance of Metabolic Expression Subtypes in Human Cancers.

  • Xinxin Peng‎ et al.
  • Cell reports‎
  • 2018‎

Metabolic reprogramming provides critical information for clinical oncology. Using molecular data of 9,125 patient samples from The Cancer Genome Atlas, we identified tumor subtypes in 33 cancer types based on mRNA expression patterns of seven major metabolic processes and assessed their clinical relevance. Our metabolic expression subtypes correlated extensively with clinical outcome: subtypes with upregulated carbohydrate, nucleotide, and vitamin/cofactor metabolism most consistently correlated with worse prognosis, whereas subtypes with upregulated lipid metabolism showed the opposite. Metabolic subtypes correlated with diverse somatic drivers but exhibited effects convergent on cancer hallmark pathways and were modulated by highly recurrent master regulators across cancer types. As a proof-of-concept example, we demonstrated that knockdown of SNAI1 or RUNX1-master regulators of carbohydrate metabolic subtypes-modulates metabolic activity and drug sensitivity. Our study provides a system-level view of metabolic heterogeneity within and across cancer types and identifies pathway cross-talk, suggesting related prognostic, therapeutic, and predictive utility.


Differences in Tumor Microenvironment Dictate T Helper Lineage Polarization and Response to Immune Checkpoint Therapy.

  • Shiping Jiao‎ et al.
  • Cell‎
  • 2019‎

Immune checkpoint therapy (ICT) shows encouraging results in a subset of patients with metastatic castration-resistant prostate cancer (mCRPC) but still elicits a sub-optimal response among those with bone metastases. Analysis of patients' bone marrow samples revealed increased Th17 instead of Th1 subsets after ICT. To further evaluate the different tumor microenvironments, we injected mice with prostate tumor cells either subcutaneously or intraosseously. ICT in the subcutaneous CRPC model significantly increases intra-tumoral Th1 subsets and improves survival. However, ICT fails to elicit an anti-tumor response in the bone CRPC model despite an increase in the intra-tumoral CD4 T cells, which are polarized to Th17 rather than Th1 lineage. Mechanistically, tumors in the bone promote osteoclast-mediated bone resorption that releases TGF-β, which restrains Th1 lineage development. Blocking TGF-β along with ICT increases Th1 subsets and promotes clonal expansion of CD8 T cells and subsequent regression of bone CRPC and improves survival.


GRIPT: a novel case-control analysis method for Mendelian disease gene discovery.

  • Jun Wang‎ et al.
  • Genome biology‎
  • 2018‎

Despite rapid progress of next-generation sequencing (NGS) technologies, the disease-causing genes underpinning about half of all Mendelian diseases remain elusive. One main challenge is the high genetic heterogeneity of Mendelian diseases in which similar phenotypes are caused by different genes and each gene only accounts for a small proportion of the patients. To overcome this gap, we developed a novel method, the Gene Ranking, Identification and Prediction Tool (GRIPT), for performing case-control analysis of NGS data. Analyses of simulated and real datasets show that GRIPT is well-powered for disease gene discovery, especially for diseases with high locus heterogeneity.


Postnatal epigenetic regulation of intestinal stem cells requires DNA methylation and is guided by the microbiome.

  • Da-Hai Yu‎ et al.
  • Genome biology‎
  • 2015‎

DNA methylation is an epigenetic mechanism central to development and maintenance of complex mammalian tissues, but our understanding of its role in intestinal development is limited.


Identification of novel direct targets of Drosophila Sine oculis and Eyes absent by integration of genome-wide data sets.

  • Meng Jin‎ et al.
  • Developmental biology‎
  • 2016‎

Drosophila eye development is a complex process that involves many transcription factors (TFs) and interactions with their cofactors and targets. The TF Sine oculis (So) and its cofactor Eyes absent (Eya) are highly conserved and are both necessary and sufficient for eye development. Despite their many important roles during development, the direct targets of So are still largely unknown. Therefore the So-dependent regulatory network governing eye determination and differentiation is poorly understood. In this study, we intersected gene expression profiles of so or eya mutant eye tissue prepared from three different developmental stages and identified 1731 differentially expressed genes across the Drosophila genome. A combination of co-expression analyses and motif discovery identified a set of twelve putative direct So targets, including three known and nine novel targets. We also used our previous So ChIP-seq data to assess motif predictions for So and identified a canonical So binding motif. Finally, we performed in vivo enhancer reporter assays to test predicted enhancers from six candidate target genes and find that at least one enhancer from each gene is expressed in the developing eye disc and that their expression patterns overlap with that of So. We furthermore confirmed that the expression level of predicted direct So targets, for which antibodies are available, are reduced in so or eya post-mitotic knockout eye discs. In summary, we expand the set of putative So targets and show for the first time that the combined use of expression profiling of so with its cofactor eya is an effective method to identify novel So targets. Moreover, since So is highly conserved throughout the metazoa, our results provide the basis for future functional studies in a wide variety of organisms.


Histone acetyl transferase 1 is essential for mammalian development, genome stability, and the processing of newly synthesized histones H3 and H4.

  • Prabakaran Nagarajan‎ et al.
  • PLoS genetics‎
  • 2013‎

Histone acetyltransferase 1 is an evolutionarily conserved type B histone acetyltransferase that is thought to be responsible for the diacetylation of newly synthesized histone H4 on lysines 5 and 12 during chromatin assembly. To understand the function of this enzyme in a complex organism, we have constructed a conditional mouse knockout model of Hat1. Murine Hat1 is essential for viability, as homozygous deletion of Hat1 results in neonatal lethality. The lungs of embryos and pups genetically deficient in Hat1 were much less mature upon histological evaluation. The neonatal lethality is due to severe defects in lung development that result in less aeration and respiratory distress. Many of the Hat1(-/-) neonates also display significant craniofacial defects with abnormalities in the bones of the skull and jaw. Hat1(-/-) mouse embryonic fibroblasts (MEFs) are defective in cell proliferation and are sensitive to DNA damaging agents. In addition, the Hat1(-/-) MEFs display a marked increase in genome instability. Analysis of histone dynamics at sites of replication-coupled chromatin assembly demonstrates that Hat1 is not only responsible for the acetylation of newly synthesized histone H4 but is also required to maintain the acetylation of histone H3 on lysines 9, 18, and 27 during replication-coupled chromatin assembly.


IFT81 as a Candidate Gene for Nonsyndromic Retinal Degeneration.

  • Rachayata Dharmat‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2017‎

IFT81, a core component of the IFT-B complex, involved in the bidirectional transport of ciliary proteins, has been recently implicated in syndromic ciliopathies. However, none of the IFT-B core complex proteins have been associated with nonsyndromic retinal dystrophies. Given the importance of ciliary transport in photoreceptor function and structural maintenance, we sought to investigate the impact of IFT (intraflagellar transport) mutations in nonsyndromic retinopathies.


Reprogramming of H3K9bhb at regulatory elements is a key feature of fasting in the small intestine.

  • Christopher J Terranova‎ et al.
  • Cell reports‎
  • 2021‎

β-hydroxybutyrate (β-OHB) is an essential metabolic energy source during fasting and functions as a chromatin regulator by lysine β-hydroxybutyrylation (Kbhb) modification of the core histones H3 and H4. We report that Kbhb on histone H3 (H3K9bhb) is enriched at proximal promoters of critical gene subsets associated with lipolytic and ketogenic metabolic pathways in small intestine (SI) crypts during fasting. Similar Kbhb enrichment is observed in Lgr5+ stem cell-enriched epithelial spheroids treated with β-OHB in vitro. Combinatorial chromatin state analysis reveals that H3K9bhb is associated with active chromatin states and that fasting enriches for an H3K9bhb-H3K27ac signature at active metabolic gene promoters and distal enhancer elements. Intestinal knockout of Hmgcs2 results in marked loss of H3K9bhb-associated loci, suggesting that local production of β-OHB is responsible for chromatin reprogramming within the SI crypt. We conclude that modulation of H3K9bhb in SI crypts is a key gene regulatory event in response to fasting.


LILRB4 suppresses immunity in solid tumors and is a potential target for immunotherapy.

  • Naveen Sharma‎ et al.
  • The Journal of experimental medicine‎
  • 2021‎

Immune receptors expressed on TAMs are intriguing targets for tumor immunotherapy. In this study, we found inhibitory receptor LILRB4 on a variety of intratumoral immune cell types in murine tumor models and human cancers, most prominently on TAMs. LILRB4, known as gp49B in mice, is a LILRB family receptor. Human and murine LILRB4 have two extracellular domains but differ in the number of intracellular ITIMs (three versus two). We observed a high correlation in LILRB4 expression with other immune inhibitory receptors. After tumor challenge, LILRB4-/- mice and mice treated with anti-LILRB4 antibody showed reduced tumor burden and increased survival. LILRB4-/- genotype or LILRB4 blockade increased tumor immune infiltrates and the effector (Teff) to regulatory (Treg) T cell ratio and modulated phenotypes of TAMs toward less suppressive, CD4+ T cells to Th1 effector, and CD8+ T cells to less exhausted. These findings reveal that LILRB4 strongly suppresses tumor immunity in TME and that alleviating that suppression provides antitumor efficacy.


NGS-based Molecular diagnosis of 105 eyeGENE(®) probands with Retinitis Pigmentosa.

  • Zhongqi Ge‎ et al.
  • Scientific reports‎
  • 2015‎

The National Ophthalmic Disease Genotyping and Phenotyping Network (eyeGENE(®)) was established in an effort to facilitate basic and clinical research of human inherited eye disease. In order to provide high quality genetic testing to eyeGENE(®)'s enrolled patients which potentially aids clinical diagnosis and disease treatment, we carried out a pilot study and performed Next-generation sequencing (NGS) based molecular diagnosis for 105 Retinitis Pigmentosa (RP) patients randomly selected from the network. A custom capture panel was designed, which incorporated 195 known retinal disease genes, including 61 known RP genes. As a result, disease-causing mutations were identified in 52 out of 105 probands (solving rate of 49.5%). A total of 82 mutations were identified, and 48 of them were novel. Interestingly, for three probands the molecular diagnosis was inconsistent with the initial clinical diagnosis, while for five probands the molecular information suggested a different inheritance model other than that assigned by the physician. In conclusion, our study demonstrated that NGS target sequencing is efficient and sufficiently precise for molecular diagnosis of a highly heterogeneous patient cohort from eyeGENE(®).


Transcriptome-Wide Analysis of Human Chondrocyte Expansion on Synoviocyte Matrix.

  • Thomas J Kean‎ et al.
  • Cells‎
  • 2019‎

Human chondrocytes are expanded and used in autologous chondrocyte implantation techniques and are known to rapidly de-differentiate in culture. These chondrocytes, when cultured on tissue culture plastic (TCP), undergo both phenotypical and morphological changes and quickly lose the ability to re-differentiate to produce hyaline-like matrix. Growth on synoviocyte-derived extracellular matrix (SDECM) reduces this de-differentiation, allowing for more than twice the number of population doublings (PD) whilst retaining chondrogenic capacity. The goal of this study was to apply RNA sequencing (RNA-Seq) analysis to examine the differences between TCP-expanded and SDECM-expanded human chondrocytes. Human chondrocytes from three donors were thawed from primary stocks and cultured on TCP flasks or on SDECM-coated flasks at physiological oxygen tension (5%) for 4 passages. During log expansion, RNA was extracted from the cell layer (70⁻90% confluence) at passages 1 and 4. Total RNA was column-purified and DNAse-treated before quality control analysis and next-generation RNA sequencing. Significant effects on gene expression were observed due to both culture surface and passage number. These results offer insight into the mechanism of how SDECM provides a more chondrogenesis-preserving environment for cell expansion, the transcriptome-wide changes that occur with culture, and potential mechanisms for further enhancement of chondrogenesis-preserving growth.


A functional genomic screen in vivo identifies CEACAM5 as a clinically relevant driver of breast cancer metastasis.

  • Emily Powell‎ et al.
  • NPJ breast cancer‎
  • 2018‎

Tumor cells disseminate early in tumor development making metastasis-prevention strategies difficult. Identifying proteins that promote the outgrowth of disseminated tumor cells may provide opportunities for novel therapeutic strategies. Despite multiple studies demonstrating that the mesenchymal-to-epithelial transition (MET) is critical for metastatic colonization, key regulators that initiate this transition remain unknown. We serially passaged lung metastases from a primary triple negative breast cancer xenograft to the mammary fat pads of recipient mice to enrich for gene expression changes that drive metastasis. An unbiased transcriptomic signature of potential metastatic drivers was generated, and a high throughput gain-of-function screen was performed in vivo to validate candidates. Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) was identified as a metastatic driver. CEACAM5 overproduction enriched for an epithelial gene expression pattern and facilitated tumor outgrowth at metastatic sites. Tissues from patients with metastatic breast cancer confirmed elevated levels of CEACAM5 in lung metastases relative to breast tumors, and an inverse correlation between CEACAM5 and the mesenchymal marker vimentin was demonstrated. Thus, CEACAM5 facilitates tumor outgrowth at metastatic sites by promoting MET, warranting its investigation as a therapeutic target and biomarker of aggressiveness in breast cancer.


Mapping the evolution of T cell states during response and resistance to adoptive cellular therapy.

  • Pavan Bachireddy‎ et al.
  • Cell reports‎
  • 2021‎

To elucidate mechanisms by which T cells eliminate leukemia, we study donor lymphocyte infusion (DLI), an established immunotherapy for relapsed leukemia. We model T cell dynamics by integrating longitudinal, multimodal data from 94,517 bone marrow-derived single T cell transcriptomes in addition to chromatin accessibility and single T cell receptor sequencing from patients undergoing DLI. We find that responsive tumors are defined by enrichment of late-differentiated T cells before DLI and rapid, durable expansion of early differentiated T cells after treatment, highly similar to "terminal" and "precursor" exhausted subsets, respectively. Resistance, in contrast, is defined by heterogeneous T cell dysfunction. Surprisingly, early differentiated T cells in responders mainly originate from pre-existing and novel clonotypes recruited to the leukemic microenvironment, rather than the infusion. Our work provides a paradigm for analyzing longitudinal single-cell profiling of scenarios beyond adoptive cell therapy and introduces Symphony, a Bayesian approach to infer regulatory circuitry underlying T cell subsets, with broad relevance to exhaustion antagonists across cancers.


High-resolution clonal mapping of multi-organ metastasis in triple negative breast cancer.

  • Gloria V Echeverria‎ et al.
  • Nature communications‎
  • 2018‎

Most triple negative breast cancers (TNBCs) are aggressively metastatic with a high degree of intra-tumoral heterogeneity (ITH), but how ITH contributes to metastasis is unclear. Here, clonal dynamics during metastasis were studied in vivo using two patient-derived xenograft (PDX) models established from the treatment-naive primary breast tumors of TNBC patients diagnosed with synchronous metastasis. Genomic sequencing and high-complexity barcode-mediated clonal tracking reveal robust alterations in clonal architecture between primary tumors and corresponding metastases. Polyclonal seeding and maintenance of heterogeneous populations of low-abundance subclones is observed in each metastasis. However, lung, liver, and brain metastases are enriched for an identical population of high-abundance subclones, demonstrating that primary tumor clones harbor properties enabling them to seed and thrive in multiple organ sites. Further, clones that dominate multi-organ metastases share a genomic lineage. Thus, intrinsic properties of rare primary tumor subclones enable the seeding and colonization of metastases in secondary organs in these models.


The human histone chaperone sNASP interacts with linker and core histones through distinct mechanisms.

  • Huanyu Wang‎ et al.
  • Nucleic acids research‎
  • 2012‎

Somatic nuclear autoantigenic sperm protein (sNASP) is a human homolog of the N1/N2 family of histone chaperones. sNASP contains the domain structure characteristic of this family, which includes a large acidic patch flanked by several tetratricopeptide repeat (TPR) motifs. sNASP possesses a unique binding specificity in that it forms specific complexes with both histone H1 and histones H3/H4. Based on the binding affinities of sNASP variants to histones H1, H3.3, H4 and H3.3/H4 complexes, sNASP uses distinct structural domains to interact with linker and core histones. For example, one of the acidic patches of sNASP was essential for linker histone binding but not for core histone interactions. The fourth TPR of sNASP played a critical role in interactions with histone H3/H4 complexes, but did not influence histone H1 binding. Finally, analysis of cellular proteins demonstrated that sNASP existed in distinct complexes that contained either linker or core histones.


Integrative subcellular proteomic analysis allows accurate prediction of human disease-causing genes.

  • Li Zhao‎ et al.
  • Genome research‎
  • 2016‎

Proteomic profiling on subcellular fractions provides invaluable information regarding both protein abundance and subcellular localization. When integrated with other data sets, it can greatly enhance our ability to predict gene function genome-wide. In this study, we performed a comprehensive proteomic analysis on the light-sensing compartment of photoreceptors called the outer segment (OS). By comparing with the protein profile obtained from the retina tissue depleted of OS, an enrichment score for each protein is calculated to quantify protein subcellular localization, and 84% accuracy is achieved compared with experimental data. By integrating the protein OS enrichment score, the protein abundance, and the retina transcriptome, the probability of a gene playing an essential function in photoreceptor cells is derived with high specificity and sensitivity. As a result, a list of genes that will likely result in human retinal disease when mutated was identified and validated by previous literature and/or animal model studies. Therefore, this new methodology demonstrates the synergy of combining subcellular fractionation proteomics with other omics data sets and is generally applicable to other tissues and diseases.


Comprehensive Molecular Characterization of the Hippo Signaling Pathway in Cancer.

  • Yumeng Wang‎ et al.
  • Cell reports‎
  • 2018‎

Hippo signaling has been recognized as a key tumor suppressor pathway. Here, we perform a comprehensive molecular characterization of 19 Hippo core genes in 9,125 tumor samples across 33 cancer types using multidimensional "omic" data from The Cancer Genome Atlas. We identify somatic drivers among Hippo genes and the related microRNA (miRNA) regulators, and using functional genomic approaches, we experimentally characterize YAP and TAZ mutation effects and miR-590 and miR-200a regulation for TAZ. Hippo pathway activity is best characterized by a YAP/TAZ transcriptional target signature of 22 genes, which shows robust prognostic power across cancer types. Our elastic-net integrated modeling further reveals cancer-type-specific pathway regulators and associated cancer drivers. Our results highlight the importance of Hippo signaling in squamous cell cancers, characterized by frequent amplification of YAP/TAZ, high expression heterogeneity, and significant prognostic patterns. This study represents a systems-biology approach to characterizing key cancer signaling pathways in the post-genomic era.


Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types.

  • Zhongqi Ge‎ et al.
  • Cell reports‎
  • 2018‎

Protein ubiquitination is a dynamic and reversible process of adding single ubiquitin molecules or various ubiquitin chains to target proteins. Here, using multidimensional omic data of 9,125 tumor samples across 33 cancer types from The Cancer Genome Atlas, we perform comprehensive molecular characterization of 929 ubiquitin-related genes and 95 deubiquitinase genes. Among them, we systematically identify top somatic driver candidates, including mutated FBXW7 with cancer-type-specific patterns and amplified MDM2 showing a mutually exclusive pattern with BRAF mutations. Ubiquitin pathway genes tend to be upregulated in cancer mediated by diverse mechanisms. By integrating pan-cancer multiomic data, we identify a group of tumor samples that exhibit worse prognosis. These samples are consistently associated with the upregulation of cell-cycle and DNA repair pathways, characterized by mutated TP53, MYC/TERT amplification, and APC/PTEN deletion. Our analysis highlights the importance of the ubiquitin pathway in cancer development and lays a foundation for developing relevant therapeutic strategies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: