Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 71 papers

Soil chemical property changes in eggplant/garlic relay intercropping systems under continuous cropping.

  • Mengyi Wang‎ et al.
  • PloS one‎
  • 2014‎

Soil sickness is a critical problem for eggplant (Solanum melongena L.) under continuous cropping that affects sustainable eggplant production. Relay intercropping is a significant technique on promoting soil quality, improving eco-environment, and raising output. Field experiments were conducted from September 2010 to November 2012 in northwest China to determine the effects of relay intercropping eggplant with garlic (Allium sativum L.) on soil enzyme activities, available nutrient contents, and pH value under a plastic tunnel. Three treatments were in triplicate using randomized block design: eggplant monoculture (CK), eggplant relay intercropping with normal garlic (NG) and eggplant relay intercropping with green garlic (GG). The major results are as follows: (1) the activities of soil invertase, urease, and alkaline phosphatase were generally enhanced in NG and GG treatments; (2) relay intercropping significantly increased the soil available nutrient contents, and they were mostly higher in GG than NG. On April 11, 2011, the eggplant/garlic co-growth stage, the available nitrogen content in GG was 76.30 mg·kg(-1), significantly higher than 61.95 mg·kg(-1) in NG. For available potassium on April 17, 2012, they were 398.48 and 387.97 mg·kg(-1) in NG and GG, both were significantly higher than 314.84 mg·kg(-1) in CK; (3) the soil pH showed a significantly higher level in NG treatment, but lower in GG treatment compared with CK. For the last samples in 2012, soil pH in NG and GG were 7.70 and 7.46, the highest and lowest one among them; (4) the alkaline phosphatase activity and pH displayed a similar decreasing trend with continuous cropping. These findings indicate that relay intercropping eggplant with garlic could be an ideal farming system to effectively improve soil nutrient content, increase soil fertility, and alleviate soil sickness to some extent. These findings are important in helping to develop sustainable eggplant production.


Garlic exerts allelopathic effects on pepper physiology in a hydroponic co-culture system.

  • Haiyan Ding‎ et al.
  • Biology open‎
  • 2016‎

A hydroponic co-culture system was adopted to determine the allelopathic potential of garlic on the growth of pepper plants. Different numbers of garlic plants (0, 2, 4, 8 and 12) were hydroponically co-cultured with two pepper plants to investigate allelopathic effects on the growth attributes and antioxidative defense system of the test pepper plants. The responses of the pepper plants depended on the number of garlic plants included in the co-culture system, indicating an association of pepper growth with the garlic root exudate concentration. When grown at a pepper/garlic ratio of 1:1 or 1:2, the pepper plant height, chlorophyll content, and peroxidase (POD), catalase (CAT) and phenylalanine ammonia-lyase (PAL) activities were significantly increased after 30 days of co-culture; in contrast, reduction in methane dicarboxylic aldehyde (MDA) content was observed. However, when the pepper/garlic ratio was 1:4 or higher, these morphological indices and protective enzyme activities were significantly inhibited, whereas MDA levels in the pepper leaves were significantly increased due to severe membrane lipid peroxidation. The results indicate that although low concentrations of garlic root exudates appear to induce protective enzyme systems and promote pepper growth, high concentrations have deleterious effects. These findings suggest that further investigations should optimize the co-culture pepper/garlic ratio to reduce continuous cropping obstacles in pepper production.


PA3297 Counteracts Antimicrobial Effects of Azithromycin in Pseudomonas aeruginosa.

  • Hao Tan‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

Pseudomonas aeruginosa causes acute and chronic infections in human. Its increasing resistance to antibiotics requires alternative treatments that are more effective than available strategies. Among the alternatives is the unconventional usage of conventional antibiotics, of which the macrolide antibiotic azithromycin (AZM) provides a paradigmatic example. AZM therapy is associated with a small but consistent improvement in respiratory function of cystic fibrosis patients suffering from chronic P. aeruginosa infection. Besides immunomodulating activities, AZM represses bacterial genes involved in virulence, quorum sensing, biofilm formation, and motility, all of which are due to stalling of ribosome and depletion of cellular tRNA pool. However, how P. aeruginosa responds to and counteracts the effects of AZM remain elusive. Here, we found that deficiency of PA3297, a gene encoding a DEAH-box helicase, intensified AZM-mediated bacterial killing, suppression of pyocyanin production and swarming motility, and hypersusceptibility to hydrogen peroxide. We demonstrated that expression of PA3297 is induced by the interaction between AZM and ribosome. Importantly, mutation of PA3297 resulted in elevated levels of unprocessed 23S-5S rRNA in the presence of AZM, which might lead to increased susceptibility to AZM-mediated effects. Our results revealed one of the bacterial responses in counteracting the detrimental effects of AZM.


Changes in the Soil Microbiome in Eggplant Monoculture Revealed by High-Throughput Illumina MiSeq Sequencing as Influenced by Raw Garlic Stalk Amendment.

  • Muhammad Imran Ghani‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

The incorporation of plant residues into soil can be considered a keystone sustainability factor in improving soil structure function. However, the effects of plant residue addition on the soil microbial communities involved in biochemical cycles and abiotic stress phenomena are poorly understood. In this study, experiments were conducted to evaluate the role of raw garlic stalk (RGS) amendment in avoiding monoculture-related production constraints by studying the changes in soil chemical properties and microbial community structures. RGS was applied in four different doses, namely the control (RGS0), 1% (RGS1), 3% (RGS2), and 5% (RGS3) per 100 g of soil. The RGS amendment significantly increased soil electrical conductivity (EC), N, P, K, and enzyme activity. The soil pH significantly decreased with RGS application. High-throughput Illumina MiSeq sequencing revealed significant alterations in bacterial community structures in response to RGS application. Among the 23 major taxa detected, Anaerolineaceae, Acidobacteria, and Cyanobacteria exhibited an increased abundance level. RGS2 increased some bacteria reported to be beneficial including Acidobacteria, Bacillus, and Planctomyces (by 42%, 64%, and 1% respectively). Furthermore, internal transcribed spacer (ITS) fungal regions revealed significant diversity among the different treatments, with taxa such as Chaetomium (56.2%), Acremonium (4.3%), Fusarium (4%), Aspergillus (3.4%), Sordariomycetes (3%), and Plectosphaerellaceae (2%) showing much abundance. Interestingly, Coprinellus (14%) was observed only in RGS-amended soil. RGS treatments effectively altered soil fungal community structures and reduced certain known pathogenic fungal genera, i.e., Fusarium and Acremonium. The results of the present study suggest that RGS amendment potentially affects the microbial community structures that probably affect the physiological and morphological attributes of eggplant under a plastic greenhouse vegetable cultivation system (PGVC) in monoculture.


Hiseq Base Molecular Characterization of Soil Microbial Community, Diversity Structure, and Predictive Functional Profiling in Continuous Cucumber Planted Soil Affected by Diverse Cropping Systems in an Intensive Greenhouse Region of Northern China.

  • Ahmad Ali‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Cover crops are key determinants of the ecological stability and sustainability of continuous cropping soils. However, their agro-ecological role in differentially reshaping the microbiome structure and functioning under a degraded agroecosystem remains poorly investigated. Therefore, structural and metabolic changes in soil bacterial community composition in response to diverse plant species were assessed. Winter catch leafy vegetables crops were introduced as cover plants in a cucumber-fallow period. The results indicate that cover crop diversification promoted beneficial changes in soil chemical and biological attributes, which increased crop yields in a cucumber double-cropping system. Illumina high-throughput sequencing of 16S rRNA genes indicated that the bacterial community composition and diversity changed through changes in the soil properties. Principal component analysis (PCA) coupled with non-metric multidimensional scaling (NMDS) analysis reveals that the cover planting shaped the soil microbiome more than the fallow planting (FC). Among different cropping systems, spinach-cucumber (SC) and non-heading Chinese cabbage-cucumber (NCCC) planting systems greatly induced higher soil nutrient function, biological activity, and bacterial diversity, thus resulting in higher cucumber yield. Quantitative analysis of linear discriminant analysis effect size (LEfSe) indicated that Proteobacteria, Actinobacteria, Bacteroidetes, and Acidobacteria were the potentially functional and active soil microbial taxa. Rhizospheres of NCCC, leaf lettuce-cucumber (LLC), coriander-cucumber (CC), and SC planting systems created hotspots for metabolic capabilities of abundant functional genes, compared to FC. In addition, the predictive metabolic characteristics (metabolism and detoxification) associated with host-plant symbiosis could be an important ecological signal that provides direct evidence of mediation of soil structure stability. Interestingly, the plant density of non-heading Chinese cabbage and spinach species was capable of reducing the adverse effect of arsenic (As) accumulation by increasing the function of the arsenate reductase pathway. Redundancy analysis (RDA) indicated that the relative abundance of the core microbiome can be directly and indirectly influenced by certain environmental determinants. These short-term findings stress the importance of studying cover cropping systems as an efficient biological tool to protect the ecological environment. Therefore, we can speculate that leafy crop diversification is socially acceptable, economically justifiable, and ecologically adaptable to meet the urgent demand for intensive cropping systems to promote positive feedback between crop-soil sustainable intensification.


Garlic Substrate Induces Cucumber Growth Development and Decreases Fusarium Wilt through Regulation of Soil Microbial Community Structure and Diversity in Replanted Disturbed Soil.

  • Ahmad Ali‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Garlic substrate could influence plant growth through affecting soil microbiome structure. The relationship mechanism between changes in soil microbial communities, disease suppression and plant development, however, remains unclear, particularly in the degraded soil micro-ecological environment. In this study, garlic substrates as a soil amendment were incorporated with different ratios (1:100, 3:100 and 5:100 g/100 g of soil) in a replanted disturbed soil of long-term cucumber monoculture (annual double cropping system in a greenhouse). The results indicated that higher amount of C-amended garlic substrate significantly induced soil suppressiveness (35.9% greater than control (CK) against the foliar disease incidence rate. This inhibitory effect consequently improved the cucumber growth performance and fruit yield to 20% higher than the non-amended soil. Short-term garlic substrate addition modified the soil quality through an increase in soil organic matter (SOM), nutrient availability and enzymatic activities. Illumina MiSeq sequencing analysis revealed that soil bacterial and fungal communities in the garlic amendment were significantly different from the control. Species richness and diversity indices significantly increased under treated soil. The correlation-based heat map analysis suggested that soil OM, nutrient contents and biological activators were the primary drivers reshaping the microbial community structure. Furthermore, garlic substrate inhibited soil-borne pathogen taxa (Fusarium and Nematoda), and their reduced abundances, significantly affecting the crop yield. In addition, the host plant recruited certain plant-beneficial microbes due to substrate addition that could directly contribute to plant-pathogen inhibition and crop biomass production. For example, abundant Acidobacteria, Ascomycota and Glomeromycota taxa were significantly associated with cucumber yield promotion. Firmicutes, Actinobacteria, Bacteroidetes, Basidiomycota and Glomeromycota were the associated microbial taxa that possibly performed as antagonists of Fusarium wilt, with plant pathogen suppression potential in monocropped cucumber-planted soil.


Mechanisms for Rapid Evolution of Carbapenem Resistance in a Clinical Isolate of Pseudomonas aeruginosa.

  • Congjuan Xu‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

Infections by Pseudomonas aeruginosa are difficult to cure due to its high intrinsic and acquired antibiotic resistance. Once colonized the human host, and thanks to antibiotic treatment pressure, P. aeruginosa usually acquires genetic mutations which provide bacteria with antibiotic resistance as well as ability to better adapt to the host environment. Deciphering the evolutionary traits may provide important insights into the development of effective combinatory antibiotic therapy to treat P. aeruginosa infections. In this study, we investigated the molecular mechanisms by which a clinical isolate (ISP50) yields a carbapenem-resistant derivative (IRP41). RNAseq and genomic DNA reference mapping were conducted to compare the transcriptional profiles and in vivo evolutionary trajectories between the two isolates. Our results demonstrated that oprD mutation together with ampC hyper-expression contributed to the increased resistance to carbapenem in the isolate IRP41. Furthermore, a ldcA (PA5198) gene, encoding murein tetrapeptide carboxypeptidase, has been demonstrated for the first time to negatively influence the ampC expression in P. aeruginosa.


Identification of Novel PhoP-PhoQ Regulated Genes That Contribute to Polymyxin B Tolerance in Pseudomonas aeruginosa.

  • Baopeng Yang‎ et al.
  • Microorganisms‎
  • 2021‎

Polymyxin B and E (colistin) are the last resorts to treat multidrug-resistant Gram-negative pathogens. Pseudomonas aeruginosa is intrinsically resistant to a variety of antibiotics. The PhoP-PhoQ two-component regulatory system contributes to the resistance to polymyxins by regulating an arnBCADTEF-pmrE operon that encodes lipopolysaccharide modification enzymes. To identify additional PhoP-regulated genes that contribute to the tolerance to polymyxin B, we performed a chromatin immunoprecipitation sequencing (ChIP-Seq) assay and found novel PhoP binding sites on the chromosome. We further verified that PhoP directly controls the expression of PA14_46900, PA14_50740 and PA14_52340, and the operons of PA14_11970-PA14_11960 and PA14_52350-PA14_52370. Our results demonstrated that mutation of PA14_46900 increased the bacterial binding and susceptibility to polymyxin B. Meanwhile, mutation of PA14_11960 (papP), PA14_11970 (mpl), PA14_50740 (slyB), PA14_52350 (ppgS), and PA14_52370 (ppgH) reduced the bacterial survival rates and increased ethidium bromide influx under polymyxin B or Sodium dodecyl sulfate (SDS) treatment, indicating roles of these genes in maintaining membrane integrity in response to the stresses. By 1-N-phenylnaphthylamine (NPN) and propidium iodide (PI) staining assay, we found that papP and slyB are involved in maintaining outer membrane integrity, and mpl and ppgS-ppgH are involved in maintaining inner membrane integrity. Overall, our results reveal novel PhoP-PhoQ regulated genes that contribute to polymyxin B tolerance.


A MexR Mutation Which Confers Aztreonam Resistance to Pseudomonas aeruginosa.

  • Zhenzhen Ma‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Therapy for Pseudomonas aeruginosa infections is hard due to its high natural and acquirable antibiotic resistance. After colonization in the hosts, P. aeruginosa commonly accumulates genomic mutations which confer them antibiotic resistance and better adaptations to the host environment. Deciphering the mechanisms of antibiotic resistance development in the clinical setting may provide critical insights into the design of effective combinatory antibiotic therapies to treat P. aeruginosa infections. In this work, we demonstrate a resistance mechanism to aztreonam of a clinical isolate (ARP36) in comparison with a sensitive one (CSP18). RNAseq and genomic DNA resequencing were carried out to compare the global transcriptional profiles and in the clinical setting genomic profiles between these two isolates. The results demonstrated that hyperexpression of an efflux pump MexAB-OprM caused by a R70Q substitution in MexR, contributed to the increased resistance to aztreonam in the isolate ARP36. Simulation of mexR of ARP36 by gene editing in CSP18 conferred CSP18 an ARP36-like susceptibility to the aztreonam. The R70Q substitution prevented MexR from binding to the intergenic region between mexR and mexAB-oprM operon, with no impact on its dimerization. The presented experimental results explain for the first time why the clinically relevant R70Q substitution in the MexR derepresses the expression of mexAB-oprM in P. aeruginosa.


NrtR Mediated Regulation of H1-T6SS in Pseudomonas aeruginosa.

  • Xinxin Zhang‎ et al.
  • Microbiology spectrum‎
  • 2022‎

NrtR is a Nudix-related transcriptional regulator that is distributed among diverse bacteria and plays an important role in modulating bacterial intracellular NAD homeostasis. Previously, we showed that NrtR influences the T3SS expression and pathogenesis of Pseudomonas aeruginosa and demonstrated that NrtR mediates T3SS regulation through the cAMP/Vfr pathway. In the present study, we found that mutation of the nrtR gene leads to upregulation of the Hcp secretion island-I type VI secretion system (H1-T6SS). Further analysis revealed that mutation of the nrtR gene results in upregulation of regulatory RNAs (RsmY/RsmZ) that are known to control the H1-T6SS by sequestration of RsmA or RsmN. Simultaneous deletion of rsmY/rsmZ reduced the expression of H1-T6SS in the ΔnrtR mutant. In addition, overexpression of either rsmA or rsmN in ΔnrtR decreased H1-T6SS expression. Chromatin immunoprecipitation (ChIP)-Seq and electrophoretic mobility shift assay (EMSA) analyses revealed that NrtR directly binds to the promoters of rsmY, rsmZ and tssA1 (first gene of the H1-T6SS operon). Overall, the results from this study reveal the molecular details of NrtR-mediated regulation of H1-T6SS in P. aeruginosa. IMPORTANCE NrtR is a Nudix-related transcriptional regulator and controls the NAD cofactor biosynthesis in bacteria. P. aeruginosa NrtR binds to the intergenic region between nadD2 and pcnA to repress the expression of the two operons, therefore controlling the NAD biosynthesis. We have previously reported that NrtR controls T3SS expression via the cAMP/Vfr pathway in P. aeruginosa. However, the global regulatory function and direct binding targets of the NrtR remain elusive in P. aeruginosa. This study reveals novel direct regulatory targets of the NrtR in P. aeruginosa, elucidating the molecular mechanism of NrtR-mediated regulation of H1-T6SS.


Reversion of Ceftazidime Resistance in Pseudomonas aeruginosa under Clinical Setting.

  • Qi Liu‎ et al.
  • Microorganisms‎
  • 2022‎

Pseudomonas aeruginosa is an important nosocomial pathogen which frequently becomes resistant to most antibiotics used in chemotherapy, resulting in treatment failure among infected individuals. Although the evolutionary trajectory and molecular mechanisms for becoming β-lactam resistant have been well established for P. aeruginosa, the molecular basis of reversion from β-lactam resistant to susceptible is largely unexplored. In this study, we investigated the molecular mechanisms by which a ceftazidime-resistant clinical strain is converted to a ceftazidime-susceptible isolate under the clinical setting. RNA sequencing and genomic DNA reference mapping were conducted to compare the transcriptional profiles and chromosomal mutations between these two isolates. Our results demonstrate that a gain-of-function mutation in ampD, via deletion of a 53 bp duplicated nucleotide sequence, is the contributory factor for the conversion. Furthermore, we show for the first time that AmpD is involved in intraspecies competitiveness in P. aeruginosa. We also found that AmpD is not responsible for phenotypic changes between R1 and S2, including growth rate, motilities, pyocyanin, rhamnolipid, and biofilm production. This finding provides novel insights into the alteration of β-lactam sensitivity in P. aeruginosa under the clinical setting.


Pseudomonas aeruginosa Citrate Synthase GltA Influences Antibiotic Tolerance and the Type III Secretion System through the Stringent Response.

  • Hao Chen‎ et al.
  • Microbiology spectrum‎
  • 2023‎

Carbohydrate metabolism plays essential roles in energy generation and providing carbon skeletons for amino acid syntheses. In addition, carbohydrate metabolism has been shown to influence bacterial susceptibility to antibiotics and virulence. In this study, we demonstrate that citrate synthase gltA mutation can increase the expression of the type III secretion system (T3SS) genes and antibiotic tolerance in Pseudomonas aeruginosa. The stringent response is activated in the gltA mutant, and deletion of the (p)ppGpp synthetase gene relA restores the antibiotic tolerance and expression of the T3SS genes to wild-type level. We further demonstrate that the intracellular level of cAMP is increased by the stringent response in the gltA mutant, which increases the expression of the T3SS master regulator gene exsA. Overall, our results reveal an essential role of GltA in metabolism, antibiotic tolerance, and virulence, as well as a novel regulatory mechanism of the stringent response-mediated regulation of the T3SS in P. aeruginosa. IMPORTANCE Rising antimicrobial resistance imposes a severe threat to human health. It is urgent to develop novel antimicrobial strategies by understanding bacterial regulation of virulence and antimicrobial resistance determinants. The stringent response plays an essential role in virulence and antibiotic tolerance. Pseudomonas aeruginosa is an opportunistic pathogen that causes acute and chronic infections in humans. The bacterium produces an arsenal of virulence factors and is highly resistant to a variety of antibiotics. In this study, we provide evidence that citrate synthase GltA plays a critical role in P. aeruginosa metabolism and influences the antibiotic tolerance and virulence. We further reveal a role of the stringent response in the regulation of the antibiotic tolerance and virulence. The significance of this work is in elucidation of novel regulatory pathways that control both antibiotic tolerance and virulence in P. aeruginosa.


Regulatory and structural mechanisms of PvrA-mediated regulation of the PQS quorum-sensing system and PHA biosynthesis in Pseudomonas aeruginosa.

  • Xiaolei Pan‎ et al.
  • Nucleic acids research‎
  • 2023‎

Pseudomonas aeruginosa is capable of causing acute and chronic infections in various host tissues, which depends on its abilities to effectively utilize host-derived nutrients and produce protein virulence factors and toxic compounds. However, the regulatory mechanisms that direct metabolic intermediates towards production of toxic compounds are poorly understood. We previously identified a regulatory protein PvrA that controls genes involved in fatty acid catabolism by binding to palmitoyl-coenzyme A (CoA). In this study, transcriptomic analyses revealed that PvrA activates the Pseudomonas quinolone signal (PQS) synthesis genes, while suppressing genes for production of polyhydroxyalkanoates (PHAs). When palmitic acid was the sole carbon source, mutation of pvrA reduced production of pyocyanin and rhamnolipids due to defective PQS synthesis, but increased PHA production. We further solved the co-crystal structure of PvrA with palmitoyl-CoA and identified palmitoyl-CoA-binding residues. By using pvrA mutants, we verified the roles of the key palmitoyl-CoA-binding residues in gene regulation in response to palmitic acid. Since the PQS signal molecules, rhamnolipids and PHA synthesis pathways are interconnected by common metabolic intermediates, our results revealed a regulatory mechanism that directs carbon flux from carbon/energy storage to virulence factor production, which might be crucial for the pathogenesis.


Parallel Evolution to Elucidate the Contributions of PA0625 and parE to Ciprofloxacin Sensitivity in Pseudomonas aeruginosa.

  • Qi Liu‎ et al.
  • Microorganisms‎
  • 2022‎

Pseudomonas aeruginosa is a ubiquitous pathogen that causes a wide range of acute and chronic infections. Ciprofloxacin, one of the first-line fluoroquinolone class antibiotics, is commonly used for the treatment of P. aeruginosa infections. However, ciprofloxacin-resistant P. aeruginosa is increasingly reported worldwide, making treatment difficult. To determine resistance-related mutations, we conducted an experimental evolution using a previously identified ciprofloxacin-resistant P. aeruginosa clinical isolate, CRP42. The evolved mutants could tolerate a 512-fold higher concentration of ciprofloxacin than CRP42. Genomic DNA reference mapping was performed, which revealed mutations in genes known to be associated with ciprofloxacin resistance as well as in those not previously linked to ciprofloxacin resistance, including the ParER586W substitution and PA0625 frameshift insertion. Simulation of the ParER586W substitution and PA0625 frameshift insertion by gene editing in CRP42 and the model strain PAO1 demonstrated that while the PA0625 mutation does contribute to resistance, mutation in the ParER586W does not contribute to resistance but rather affects tolerance against ciprofloxacin. These findings advance our understanding of ciprofloxacin resistance in P. aeruginosa.


ECF Sigma Factor HxuI Is Critical for In Vivo Fitness of Pseudomonas aeruginosa during Infection.

  • Zeqiong Cai‎ et al.
  • Microbiology spectrum‎
  • 2022‎

The opportunistic pathogen Pseudomonas aeruginosa often adapts to its host environment and causes recurrent nosocomial infections. The extracytoplasmic function (ECF) sigma factor enables bacteria to alter their gene expression in response to host environmental stimuli. Here, we report an ECF sigma factor, HxuI, which is rapidly induced once P. aeruginosa encounters the host. Host stresses such as iron limitation, oxidative stress, low oxygen, and nitric oxide induce the expression of hxuI. By combining RNA-seq and promoter-lacZ reporter fusion analysis, we reveal that HxuI can activate the expression of diverse metabolic and virulence pathways which are critical to P. aeruginosa infections, including iron acquisition, denitrification, pyocyanin synthesis, and bacteriocin production. Most importantly, overexpression of the hxuI in the laboratory strain PAO1 promotes its colonization in both murine lung and subcutaneous infections. Together, our findings show that HxuI, a key player in host stress-response, controls the in vivo adaptability and virulence of P. aeruginosa during infection. IMPORTANCE P. aeruginosa has a strong ability to adapt to diverse environments, making it capable of causing recurrent and multisite infections in clinics. Understanding host adaptive mechanisms plays an important guiding role in the development of new anti-infective agents. Here, we demonstrate that an ECFσ factor of P. aeruginosa response to the host-inflicted stresses, which promotes the bacterial in vivo fitness and pathogenicity. Furthermore, our findings may help explain the emergence of highly transmissible strains of P. aeruginosa and the acute exacerbations during chronic infections.


HMGN1 enhances CRISPR-directed dual-function A-to-G and C-to-G base editing.

  • Chao Yang‎ et al.
  • Nature communications‎
  • 2023‎

C-to-G base editors have been successfully constructed recently, but limited work has been done on concurrent C-to-G and A-to-G base editing. In addition, there is also limited data on how chromatin-associated factors affect the base editing. Here, we test a series of chromatin-associated factors, and chromosomal protein HMGN1 was found to enhance the efficiency of both C-to-G and A-to-G base editing. By fusing HMGN1, GBE and ABE to Cas9, we develop a CRISPR-based dual-function A-to-G and C-to-G base editor (GGBE) which is capable of converting simultaneous A and C to G conversion with substantial editing efficiency. Accordingly, the HMGN1 role shown in this work and the resulting GGBE tool further broaden the genome manipulation capacity of CRISPR-directed base editors.


Polynucleotide Phosphorylase Regulates Multiple Virulence Factors and the Stabilities of Small RNAs RsmY/Z in Pseudomonas aeruginosa.

  • Ronghao Chen‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

Post-transcriptional regulation enables bacteria to quickly response to environmental stresses. Polynucleotide phosphorylase (PNPase), which contains an N-terminal catalytic core and C-terminal RNA binding KH-S1 domains, is involved in RNA processing. Here we demonstrate that in Pseudomonas aeruginosa the KH-S1 domains of PNPase are required for the type III secretion system (T3SS) and bacterial virulence. Transcriptome analysis revealed a pleiotropic role of PNPase in gene regulation. Particularly, the RNA level of exsA was decreased in the ΔKH-S1 mutant, which was responsible for the reduced T3SS expression. Meanwhile, the pilus biosynthesis genes were down regulated and the type VI secretion system (T6SS) genes were up regulated in the ΔKH-S1 mutant, which were caused by increased levels of small RNAs, RsmY, and RsmZ. Further studies revealed that deletion of the KH-S1 domains did not affect the transcription of RsmY/Z, but increased their stabilities. An in vivo pull-down and in vitro electrophoretic mobility shift assay (EMSA) demonstrated a direct interaction between RsmY/Z and the KH-S1 fragment. Overall, this study reveals the roles of PNPase in the regulation of virulence factors and stabilities of small RNAs in P. aeruginosa.


Fis Regulates Type III Secretion System by Influencing the Transcription of exsA in Pseudomonas aeruginosa Strain PA14.

  • Xuan Deng‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

Fis is a versatile DNA binding protein in bacteria. It has been demonstrated in multiple bacteria that Fis plays crucial roles in regulating bacterial virulence factors and optimizing bacterial adaptation to various environments. However, the role of Fis in Pseudomonas aeruginosa virulence as well as gene regulation remains largely unknown. Here, we found that Fis was required for the virulence of P. aeruginosa in a murine acute pneumonia model. Transcriptome analysis revealed that expression of T3SS genes, including master regulator ExsA, was defective in a fis::Tn mutant. We further demonstrate that the continuous transcription of exsC, exsE, exsB, and exsA driven by the exsC promoter was required for the activation of T3SS. Fis was found to specifically bind to the exsB-exsA intergenic region and plays an essential role in the transcription elongation from exsB to exsA. Therefore, we found a novel role of Fis in the regulation of exsA expression.


Endoribonuclease YbeY Is Essential for RNA Processing and Virulence in Pseudomonas aeruginosa.

  • Yushan Xia‎ et al.
  • mBio‎
  • 2020‎

Posttranscriptional regulation plays an essential role in the quick adaptation of pathogenic bacteria to host environments, and RNases play key roles in this process by modifying small RNAs and mRNAs. We find that the Pseudomonas aeruginosa endonuclease YbeY is required for rRNA processing and the bacterial virulence in a murine acute pneumonia model. Transcriptomic analyses reveal that knocking out the ybeY gene results in downregulation of oxidative stress response genes, including the catalase genes katA and katB Consistently, the ybeY mutant is more susceptible to H2O2 and neutrophil-mediated killing. Overexpression of katA restores the bacterial tolerance to H2O2 and neutrophil killing as well as virulence. We further find that the downregulation of the oxidative stress response genes is due to defective expression of the stationary-phase sigma factor RpoS. We demonstrate an autoregulatory mechanism of RpoS and find that ybeY mutation increases the level of a small RNA, ReaL, which directly represses the translation of rpoS through the 5' UTR of its mRNA and subsequently reduces the expression of the oxidative stress response genes. In vitro assays demonstrate direct degradation of ReaL by YbeY. Deletion of reaL or overexpression of rpoS in the ybeY mutant restores the bacterial tolerance to oxidative stress and the virulence. We also demonstrate that YbeZ binds to YbeY and is involved in the 16S rRNA processing and regulation of reaL and rpoS as well as the bacterial virulence. Overall, our results reveal pleiotropic roles of YbeY and the YbeY-mediated regulation of rpoS through ReaL.IMPORTANCE The increasing bacterial antibiotic resistance imposes a severe threat to human health. For the development of effective treatment and prevention strategies, it is critical to understand the mechanisms employed by bacteria to grow in the human body. Posttranscriptional regulation plays an important role in bacterial adaptation to environmental changes. RNases and small RNAs are key players in this regulation. In this study, we demonstrate critical roles of the RNase YbeY in the virulence of the pathogenic bacterium Pseudomonas aeruginosa We further identify the small RNA ReaL as the direct target of YbeY and elucidate the YbeY-regulated pathway on the expression of bacterial virulence factors. Our results shed light on the complex regulatory network of P. aeruginosa and indicate that inference with the YbeY-mediated regulatory pathway might be a valid strategy for the development of a novel treatment strategy.


An Allelopathic Role for Garlic Root Exudates in the Regulation of Carbohydrate Metabolism in Cucumber in a Hydroponic Co-Culture System.

  • Haiyan Ding‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2019‎

Garlic is considered to have a strong positive effect on the growth and yield of receptors under soil cultivation conditions. However, how this positive promotion is produced by changing the growth environment of the receptors or directly acting on the receptors is still not very clear. The direct influence of co-culturing with different quantities of garlic plants (the control 5, 10, 15, 20) on the growth and biochemical processes of cucumber plants was studied using a hydroponic co-culture system. Different numbers of garlic bulbs inhibited the growth of cucumber plants and increased the production and induction of reactive oxygen species, which accompanied the enhancement of lipid peroxidation and oxidative damage to cucumber. This allelopathic exposure further reduced the chlorophyll contents and photosynthesis rate, and consequently impaired the photosynthetic performance of photosystem II (PSII). Garlic root exudates increased the leaves' carbohydrates accumulation, such as soluble sugar contents and sucrose levels by regulating the activities of metabolismic enzymes; however, no such accumulation was observed in the roots. Our results suggested that garlic root exudates can mediate negative plant-plant interactions and its phytotoxic influence on cucumber plants may have occurred through the application of oxidative stress, which consequently imbalanced the source-to-sink photo-assimilate flow.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: