Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 55 papers

Neuronal activity (c-Fos) delineating interactions of the cerebral cortex and basal ganglia.

  • Mei-Hong Qiu‎ et al.
  • Frontiers in neuroanatomy‎
  • 2014‎

The cerebral cortex and basal ganglia (BG) form a neural circuit that is disrupted in disorders such as Parkinson's disease. We found that neuronal activity (c-Fos) in the BG followed cortical activity, i.e., high in arousal state and low in sleep state. To determine if cortical activity is necessary for BG activity, we administered atropine to rats to induce a dissociative state resulting in slow-wave electroencephalography but hyperactive motor behaviors. Atropine blocked c-Fos expression in the cortex and BG, despite high c-Fos expression in the sub-cortical arousal neuronal groups and thalamus, indicating that cortical activity is required for BG activation. To identify which glutamate receptors in the BG that mediate cortical inputs, we injected ketamine [N-methyl-d-aspartate (NMDA) receptor antagonist] and 6-cyano-nitroquinoxaline-2, 3-dione (CNQX, a non-NMDA receptor antagonist). Systemic ketamine and CNQX administration revealed that NMDA receptors mediated subthalamic nucleus (STN) input to internal globus pallidus (GPi) and substantia nigra pars reticulata (SNr), while non-NMDA receptor mediated cortical input to the STN. Both types of glutamate receptors were involved in mediating cortical input to the striatum. Dorsal striatal (caudoputamen, CPu) dopamine depletion by 6-hydroxydopamine resulted in reduced activity of the CPu, globus pallidus externa (GPe), and STN but increased activity of the GPi, SNr, and putative layer V neurons in the motor cortex. Our results reveal that the cortical activity is necessary for BG activity and clarifies the pathways and properties of the BG-cortical network and their putative role in the pathophysiology of BG disorders.


Honokiol promotes non-rapid eye movement sleep via the benzodiazepine site of the GABA(A) receptor in mice.

  • Wei-Min Qu‎ et al.
  • British journal of pharmacology‎
  • 2012‎

Decoctions of the Chinese herb houpu contain honokiol and are used to treat a variety of mental disorders, including depression. Depression commonly presents alongside sleep disorders and sleep disturbances, which appear to be a major risk factor for depression. Here, we have evaluated the somnogenic effect of honokiol and the mechanisms involved.


Magnolol, a major bioactive constituent of the bark of Magnolia officinalis, induces sleep via the benzodiazepine site of GABA(A) receptor in mice.

  • Chang-Rui Chen‎ et al.
  • Neuropharmacology‎
  • 2012‎

Magnolol (6,6',7,12-tetramethoxy-2,2'-dimethyl-1-beta-berbaman, C(18)H(18)O(2)), an active ingredient of the bark of Magnolia officinalis, has been reported to exert potent anti-epileptic effects via the GABA(A) receptor. The receptor also mediates sleep in humans and animals. The aim of this study was to determine whether magnolol could modulate sleep behaviors by recording EEG and electromyogram in mice. The results showed that magnolol administered i.p. at a dose of 5 or 25 mg/kg could significantly shorten the sleep latency, increase the amount of non-rapid eye movement (non-REM, NREM) and rapid eye movement (REM) sleep for 3 h after administration with an increase in the number of NREM and REM sleep episodes. Magnolol at doses of 5 and 25 mg/kg increased the number of bouts of wakefulness but decreased their duration. On the other hand, magnolol increased the number of state transitions from wakefulness to NREM sleep and subsequently from NREM sleep to wakefulness. Immunohistochemical study showed that magnolol increased c-Fos expression in the neurons of ventrolateral preoptic area, a sleep center in the anterior hypothalamus, and decreased c-Fos expression in the arousal tuberomammillary nucleus, which was located in the caudolateral hypothalamus. The sleep-promoting effects and changes in c-Fos induced by magnolol were reversed by flumazenil, an antagonist at the benzodiazepine site of the GABA(A) receptor. These results indicate that magnolol increased NREM and REM sleep via the GABA(A) receptor.


The role of nucleus accumbens core/shell in sleep-wake regulation and their involvement in modafinil-induced arousal.

  • Mei-Hong Qiu‎ et al.
  • PloS one‎
  • 2012‎

We have previously shown that modafinil promotes wakefulness via dopamine receptor D(1) and D(2) receptors; however, the locus where dopamine acts has not been identified. We proposed that the nucleus accumbens (NAc) that receives the ventral tegmental area dopamine inputs play an important role not only in reward and addiction but also in sleep-wake cycle and in mediating modafinil-induced arousal.


Superior Colliculus GABAergic Neurons Are Essential for Acute Dark Induction of Wakefulness in Mice.

  • Ze Zhang‎ et al.
  • Current biology : CB‎
  • 2019‎

Sleep is regulated by homeostatic process and circadian clock. Light indirectly modulates sleep by entraining the circadian clock to the solar day. Light can also influence sleep independent of photo-entrainment [1]. An acute light exposure could induce sleep, and an acute dark pulse could increase wakefulness in nocturnal animals [1, 2]. The photoreceptors and cell types in the retina that mediate light and dark effects on sleep are well characterized [1-4]. A few studies have explored the brain region involved in acute light induction of sleep. Fos expression and nonspecific lesions suggest that the superior colliculus (SC) may play a role in acute light induction of sleep [2, 5]. In contrast, the brain area and neural circuits mediating acute dark induction of wakefulness are unknown. Here, we demonstrated that retina ganglion cells (RGCs) had direct innervations on the GABAergic neurons in the mouse SC, and the activities of these cells were inhibited by an acute dark pulse, but not influenced by a light pulse. Moreover, ablating SC GABAergic neurons abolished the acute dark induction of wakefulness, but not light induction of sleep. Based on optogenetic and electrophysiological experiments, we found that SC GABAergic neurons formed monosynaptic functional connections with dopaminergic neurons in the ventral tegmental area (VTA). Selective lesions of VTA dopaminergic cells totally abolished acute dark induction of wakefulness without affecting the light induction of sleep. Collectively, our findings uncover a fundamental role for a retinal-SC GABAergic-VTA dopaminergic circuit in acute dark induction of wakefulness and indicate that the dark and light signals affect sleep-wake behaviors through distinct pathways.


Whole-Brain Neural Connectivity to Lateral Pontine Tegmentum GABAergic Neurons in Mice.

  • Ze-Ka Chen‎ et al.
  • Frontiers in neuroscience‎
  • 2019‎

The GABAergic neurons in the lateral pontine tegmentum (LPT) play key roles in the regulation of sleep and locomotion. The dysfunction of the LPT is related to neurological disorders such as rapid eye movement sleep behavior disorder and ocular flutter. However, the whole-brain neural connectivity to LPT GABAergic neurons remains poorly understood. Using virus-based, cell-type-specific, retrograde and anterograde tracing systems, we mapped the monosynaptic inputs and axonal projections of LPT GABAergic neurons in mice. We found that LPT GABAergic neurons received inputs mainly from the superior colliculus, substantia nigra pars reticulata, dorsal raphe nucleus (DR), lateral hypothalamic area (LHA), parasubthalamic nucleus, and periaqueductal gray (PAG), as well as the limbic system (e.g., central nucleus of the amygdala). Further immunofluorescence assays revealed that the inputs to LPT GABAergic neurons were colocalized with several markers associated with important neural functions, especially the sleep-wake cycle. Moreover, numerous LPT GABAergic neuronal varicosities were observed in the medial and midline part of the thalamus, the LHA, PAG, DR, and parabrachial nuclei. Interestingly, LPT GABAergic neurons formed reciprocal connections with areas related to sleep-wake and motor control, including the LHA, PAG, DR, parabrachial nuclei, and superior colliculus, only the LPT-DR connections were in an equally bidirectional manner. These results provide a structural framework to understand the underlying neural mechanisms of rapid eye movement sleep behavior disorder and disorders of saccades.


Activation of adenosine A2A receptors in the olfactory tubercle promotes sleep in rodents.

  • Rui Li‎ et al.
  • Neuropharmacology‎
  • 2020‎

The olfactory tubercle (OT), an important nucleus in processing sensory information, has been reported to change cortical activity under odor. However, little is known about the physiological role and mechanism of the OT in sleep-wake regulation. The OT expresses abundant adenosine A2A receptors (A2ARs), which are important in sleep regulation. Therefore, we hypothesized that the OT regulates sleep via A2ARs. This study examined sleep-wake profiles through electroencephalography and electromyography recordings with pharmacological and chemogenetic manipulations in freely moving rodents. Compared with their controls, activation of OT A2ARs pharmacologically and OT A2AR neurons via chemogenetics increased non-rapid eye movement sleep for 5 and 3 h, respectively, while blockade of A2ARs decreased non-rapid eye movement sleep. Tracing and electrophysiological studies showed OT A2AR neurons projected to the ventral pallidum and lateral hypothalamus, forming inhibitory innervations. Together, these findings indicate that A2ARs in the OT play an important role in sleep regulation.


Ablation of olfactory bulb glutamatergic neurons induces depressive-like behaviors and sleep disturbances in mice.

  • Mao-Yun Yuan‎ et al.
  • Psychopharmacology‎
  • 2020‎

Major depression is a serious, but common, psychological disorder, which consists of a long-lasting depressive mood, feelings of helplessness, anhedonia, and sleep disturbances. It has been reported that rats with bilateral olfactory bulbectomies (OBXs) exhibit depressive-like behaviors which indicates that the olfactory bulb (OB) plays an important role in the formation of depression. However, which type of OB neurons plays an important role in the formation of depression remains unclear.


Mesencephalic dopamine neurons are essential for modafinil-induced arousal.

  • Yan-Fei Yang‎ et al.
  • British journal of pharmacology‎
  • 2021‎

Modafinil is a potent eugeroic (wakefulness-promoting) drug that is prescribed to treat narcolepsy and has a low incidence of abuse. Although previous studies have shown that modafinil-induced arousal depends on the dopamine receptors and transporters, the specific part/s of the dopamine transmitter system underlying this mechanism remained unclear. Here, we investigated the role of mesencephalic dopamine neurons in modafinil-evoked arousal.


Hypothalamic modulation of adult hippocampal neurogenesis in mice confers activity-dependent regulation of memory and anxiety-like behavior.

  • Ya-Dong Li‎ et al.
  • Nature neuroscience‎
  • 2022‎

Adult hippocampal neurogenesis plays a critical role in memory and emotion processing, and this process is dynamically regulated by neural circuit activity. However, it remains unknown whether manipulation of neural circuit activity can achieve sufficient neurogenic effects to modulate behavior. Here we report that chronic patterned optogenetic stimulation of supramammillary nucleus (SuM) neurons in the mouse hypothalamus robustly promotes neurogenesis at multiple stages, leading to increased production of neural stem cells and behaviorally relevant adult-born neurons (ABNs) with enhanced maturity. Functionally, selective manipulation of the activity of these SuM-promoted ABNs modulates memory retrieval and anxiety-like behaviors. Furthermore, we show that SuM neurons are highly responsive to environmental novelty (EN) and are required for EN-induced enhancement of neurogenesis. Moreover, SuM is required for ABN activity-dependent behavioral modulation under a novel environment. Our study identifies a key hypothalamic circuit that couples novelty signals to the production and maturation of ABNs, and highlights the activity-dependent contribution of circuit-modified ABNs in behavioral regulation.


Whole-brain monosynaptic inputs to lateral periaqueductal gray glutamatergic neurons in mice.

  • Wei-Xiang Ma‎ et al.
  • CNS neuroscience & therapeutics‎
  • 2023‎

The lateral periaqueductal gray (LPAG), which mainly contains glutamatergic neurons, plays an important role in social responses, pain, and offensive and defensive behaviors. Currently, the whole-brain monosynaptic inputs to LPAG glutamatergic neurons are unknown. This study aims to explore the structural framework of the underlying neural mechanisms of LPAG glutamatergic neurons.


Roles of adrenergic α1 and dopamine D1 and D2 receptors in the mediation of the desynchronization effects of modafinil in a mouse EEG synchronization model.

  • Chang-Rui Chen‎ et al.
  • PloS one‎
  • 2013‎

Synchronized electroencephalogram (EEG) activity is observed in pathological stages of cognitive impairment and epilepsy. Modafinil, known to increase the release of catecholamines, is a potent wake-promoting agent, and has shown some abilities to desynchronize EEG,but its receptor mechanisms by which modafinil induces desynchoronization remain to be elucidated. Here we used a pharmacological EEG synchronization model to investigate the involvement of adrenergic α1 receptors (R, α1R) and dopamine (DA) D1 and D2 receptors (D1Rs and D2Rs) on modafinil-induced desynchronization in mice.


Lesion of intergeniculate leaflet GABAergic neurons attenuates sleep in mice exposed to light.

  • Huan-Ying Shi‎ et al.
  • Sleep‎
  • 2020‎

Light has immediate effects on sleep in rodents, but the neural pathways underlying the effect remain to be elucidated. The intergeniculate leaflet (IGL) containing GABAergic neurons receives direct retinal inputs. We hypothesized that IGL GABAergic neurons may mediate light-induced sleep. EEG/electromyogram recording, immunohistochemistry, electrophysiology, optogenetics, fiber photometry, behavioral tests, and cell-specific destruction were employed to investigate the role of IGL GABAergic neurons in the regulation of acute light-induced sleep. Here, EEG/electromyogram recordings revealed that acute light exposure during the nocturnal active phase in mice induced a significant increase in non-rapid eye movement and rapid eye movement sleep compared with controls. Immunohistochemistry showed that acute light exposure for 2 hours in the active phase induced an increase in c-Fos expression in the IGL, whereas lights-off in the rest phase inhibited it. Patch clamp coupled with optogenetics demonstrated that retinal ganglion cells had monosynaptic functional connections to IGL GABAergic neurons. Calcium activity by fiber photometry in freely behaving mice showed that light exposure increased the activity of IGL GABAergic neurons. Furthermore, lesion of IGL GABAergic neurons by caspase-3 virus significantly attenuated the sleep-promoting effect of light exposure during active phases. Collectively, these results clearly indicated that the IGL is one of key nuclei mediating light-induced sleep in mice.


Red light at intensities above 10 lx alters sleep-wake behavior in mice.

  • Ze Zhang‎ et al.
  • Light, science & applications‎
  • 2017‎

Sleep is regulated by two mechanisms: the homeostatic process and the circadian clock. Light affects sleep and alertness by entraining the circadian clock, and acutely inducing sleep/alertness, in a manner mediated by intrinsically photosensitive retinal ganglion cells. Because intrinsically photosensitive retinal ganglion cells are believed to be minimally sensitive to red light, which is widely used for illumination to reduce the photic disturbance to nocturnal animals during the dark phase. However, the appropriate intensity of the red light is unknown. In the present study, we recorded electroencephalograms and electromyograms of freely moving mice to investigate the effects of red light emitted by light-emitting diodes at different intensities and for different durations on the sleep-wake behavior of mice. White light was used as a control. Unexpectedly, red light exerted potent sleep-inducing effects and changed the sleep architecture in terms of the duration and number of sleep episodes, the stage transition, and the EEG power density when the intensity was >20 lx. Subsequently, we lowered the light intensity and demonstrated that red light at or below 10 lx did not affect sleep-wake behavior. White light markedly induced sleep and disrupted sleep architecture even at an intensity as low as 10 lx. Our findings highlight the importance of limiting the intensity of red light (⩽10 lx) to avoid optical influence in nocturnal behavioral experiments, particularly in the field of sleep and circadian research.


Whole-Brain Monosynaptic Afferent Projections to the Cholecystokinin Neurons of the Suprachiasmatic Nucleus.

  • Xiang-Shan Yuan‎ et al.
  • Frontiers in neuroscience‎
  • 2018‎

The suprachiasmatic nucleus (SCN) is the principal pacemaker driving the circadian rhythms of physiological behaviors. The SCN consists of distinct neurons expressing neuropeptides, including arginine vasopressin (AVP), vasoactive intestinal polypeptide (VIP), gastrin-releasing peptide (GRP), cholecystokinin (CCK), and so on. AVP, VIP, and GRP neurons receive light stimulation from the retina to synchronize endogenous circadian clocks with the solar day, whereas CCK neurons are not directly innervated by retinal ganglion cells and may be involved in the non-photic regulation of the circadian clock. To better understand the function of CCK neurons in non-photic circadian rhythm, it is vital to clarify the direct afferent inputs to CCK neurons in the SCN. Here, we utilized a recently developed rabies virus- and Cre/loxP-based, cell type-specific, retrograde tracing system to map and quantitatively analyze the whole-brain monosynaptic inputs to SCN CCK neurons. We found that SCN CCK neurons received direct inputs from 29 brain nuclei. Among these nuclei, paraventricular nucleus of the hypothalamus (PVH), paraventricular nucleus of the thalamus (PVT), supraoptic nucleus (SON), ventromedial nucleus of the hypothalamus, and seven other nuclei sent numerous inputs to CCK neurons. Moderate inputs originated from the zona incerta, periventricular hypothalamic nucleus, and five other nuclei. A few inputs to CCK neurons originated from the orbital frontal cortex, prelimbic cortex, cingulate cortex, claustrum, and seven other nuclei. In addition, SCN CCK neurons were preferentially innervated by AVP neurons of the ipsilateral PVH and SON rather than their contralateral counterpart, whereas the contralateral PVT sent more projections to CCK neurons than to its ipsilateral counterpart. Taken together, these results expand our knowledge of the specific innervation to mouse SCN CCK neurons and provide an important indication for further investigations on the function of CCK neurons.


Sevoflurane depresses neurons in the medial parabrachial nucleus by potentiating postsynaptic GABAA receptors and background potassium channels.

  • Wei Xu‎ et al.
  • Neuropharmacology‎
  • 2020‎

Despite persistent clinical use for over 170 years, the neuronal mechanisms by which general anesthetics produce hypnosis remain unclear. Previous studies suggest that anesthetics exert hypnotic effects by acting on endogenous arousal circuits. Recently, it has been shown that the medial parabrachial nucleus (MPB) is a novel wake-promoting component in the dorsolateral pons. However, it is not known whether and how the MPB contributes to anesthetic-induced hypnosis. Here, we investigated the action of sevoflurane, a widely used volatile anesthetic agent that best represents the drug class of halogenated ethers, on MPB neurons in mice. Using in vivo fiber photometry, we found that the population activities of MPB neurons were inhibited during sevoflurane-induced loss of consciousness. Using in vitro whole-cell patch-clamp recordings, we revealed that sevoflurane suppressed the firing rate of MPB neurons in concentration-dependent and reversible manners. At a concentration equal to MAC of hypnosis, sevoflurane potentiated synaptic GABAA receptors (GABAA-Rs), and the inhibitory effect of sevoflurane on the firing rate of MPB neurons was completely abolished by picrotoxin, which is a selective GABAA-R antagonist. At a concentration equivalent to MAC of immobility, sevoflurane directly hyperpolarized MPB neurons and induced a significant decrease in membrane input resistance by increasing a basal potassium conductance. Moreover, pharmacological blockade of GABAA-Rs in the MPB prolongs induction and shortens emergence under sevoflurane inhalation at MAC of hypnosis. These results indicate that sevoflurane inhibits MPB neurons through postsynaptic GABAA-Rs and background potassium channels, which contributes to sevoflurane-induced hypnosis.


Activation of the ventral tegmental area increased wakefulness in mice.

  • Huan-Xin Sun‎ et al.
  • Sleep and biological rhythms‎
  • 2017‎

The ventral tegmental area (VTA) is crucial for brain functions, such as voluntary movement and cognition; however, the role of VTA in sleep-wake regulation when directly activated or inhibited remains unknown. In this study, we investigated the effects of activation or inhibition of VTA neurons on sleep-wake behavior using the pharmacogenetic "designer receptors exclusively activated by designer drugs (DREADD)" approach. Immunohistochemistry staining was performed to confirm the microinjection sites, and combined with electrophysiological experiments, to determine whether the VTA neurons were activated or inhibited. The hM3Dq-expressing VTA neurons were excited confirmed by clozapine-N-oxide (CNO)-driven c-Fos expression and firing in patch-clamp recordings; whereas the hM4Di-expressing VTA neurons inhibited by reduction of firing. Compared with controls, the activation of VTA neurons at 9:00 (inactive period) produced a 120.1% increase in the total wakefulness amount for 5 h, whereas NREM and REM sleep were decreased by 62.5 and 92.2%, respectively. Similarly, when VTA neurons were excited at 21:00 (active period), the total wakefulness amount increased 81.5%, while NREM and REM sleep decreased 64.6 and 93.8%, respectively, for 8 h. No difference of the amount and EEG power density of the NREM sleep was observed following the arousal effects of CNO. The inhibition of VTA neurons during active or inactive periods gave rise to no change in the time spent in the wakefulness, REM, and NREM sleep compared with control. The results indicated that VTA neurons activated pharmacogentically played important roles in promoting wakefulness.


Striatal neurons expressing dopamine D1 receptor promote wakefulness in mice.

  • Hui Dong‎ et al.
  • Current biology : CB‎
  • 2022‎

Patients with Parkinson's disease (PD) suffer from severe sleep disorders. Pathophysiology of the basal ganglia (BG) underlies PD, and the dorsal striatum represents the major input pathway of the BG. However, the roles and mechanisms of the dorsal striatum in controlling sleep-wake cycles remain unknown. To demonstrate the contribution of dopamine D1 receptor (D1R)-positive neurons within the dorsal striatum in promoting wakefulness, we combined optogenetic manipulations and fiber photometry with electroencephalography/electromyography recording in D1R-Cre mice. As a result, optogenetic activation of striatal D1R neurons induced immediate transitions from non-rapid eye movement (NREM) sleep to wakefulness, whereas inhibition of striatal D1R neurons attenuated wakefulness by chemogenetics. Multi-channel fiber photometry recordings revealed that the activity of striatal D1R neurons synchronized with that of BG upstreams, namely the prefrontal cortex and mediodorsal thalamus, in terms of immediate increase in activity during NREM-to-wake transitions and rapid decease during wake-to-NREM transitions. Further optogenetic manipulations revealed a prominent contribution of striatal D1R neurons in control of wakefulness by upstream, corticostriatal, thalamostriatal, and nigrostriatal projections and via downstream, striato-entopeduncular, or striatonigral pathways. Taken together, our findings revealed a circuit regulating wakefulness through striatal D1R neurons. Striatal D1R neurons play an important role in controlling wakefulness by integrating the corticostriatal, thalamostriatal, and nigrostriatal projections and innervation of striato-entopeduncular or striatonigral pathways.


Role of Dorsomedial Hypothalamus GABAergic Neurons in Sleep-Wake States in Response to Changes in Ambient Temperature in Mice.

  • Lei Li‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Good sleep quality is essential for maintaining the body's attention during wakefulness, which is easily affected by external factors such as an ambient temperature. However, the mechanism by which an ambient temperature influences sleep-wake behaviors remains unclear. The dorsomedial hypothalamus (DMH) has been reported to be involved in thermoregulation. It also receives projection from the preoptic area, which is an important region for sleep and energy homeostasis and the suprachiasmatic nucleus-a main control area of the clock rhythm. Therefore, we hypothesized that the DMH plays an important role in the regulation of sleep related to ambient temperatures. In this study, we found that cold exposure (24/20/16/12 °C) increased wakefulness and decreased non-rapid eye movement (NREM) sleep, while warm exposure (32/36/40/44 °C) increased NREM sleep and decreased wakefulness compared to 28 °C conditions in wild-type mice. Then, using non-specific and specific apoptosis, we found that lesions of whole DMH neurons and DMH γ-aminobutyric acid (GABA)-ergic neurons induced by caspase-3 virus aggravated the fluctuation of core body temperature after warm exposure and attenuated the change in sleep-wake behaviors during cold and warm exposure. However, chemogenetic activation or inhibition of DMH GABAergic neurons did not affect the sleep-wake cycle. Collectively, our findings reveal an essential role of DMH GABAergic neurons in the regulation of sleep-wake behaviors elicited by a change in ambient temperature.


Whole-brain neural connectivity to cholinergic neurons in the nucleus basalis of Meynert.

  • Zhao-Yi Chen‎ et al.
  • Journal of neurochemistry‎
  • 2023‎

The cholinergic neurons in the nucleus basalis of Meynert (NBM) are a key structure in cognition, the dysfunction of which is associated with various neurological disorders, especially dementias. However, the whole-brain neural connectivity to cholinergic neurons in the NBM remains to be further and comprehensively researched. Using virus-based, specific, retrograde, and anterograde tracing, we illustrated the monosynaptic inputs and axon projections of NBM cholinergic neurons in choline acetyltransferase (ChAT)-Cre transgenic mice. Our results showed that NBM cholinergic neurons received mainly inputs from the caudate putamen and the posterior limb of the anterior commissure in the subcortex. Moreover, the majority of cholinergic terminals from the NBM were observed in the cortex mantle, including the motor cortex, sensory cortex, and visual cortex. Interestingly, although NBM cholinergic neurons received input projections from the caudate putamen, interstitial nucleus of the posterior limb of the anterior commissure, and central amygdaloid nucleus, NBM cholinergic neurons sparsely sent axon projection to innervate these areas. Furthermore, primary motor cortex, secondary motor cortex, and primary somatosensory cortex received abundant inputs from the NBM but sent few outputs to the NBM. Taken together, our results reveal the detailed and specific connectivity of cholinergic neurons of the NBM and provide a neuroanatomic foundation for further studies to explore the important physiological functions of NBM cholinergic neurons.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: