Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Bias-Exchange Metadynamics Simulation of Membrane Permeation of 20 Amino Acids.

  • Zanxia Cao‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Thermodynamics of the permeation of amino acids from water to lipid bilayers is an important first step for understanding the mechanism of cell-permeating peptides and the thermodynamics of membrane protein structure and stability. In this work, we employed bias-exchange metadynamics simulations to simulate the membrane permeation of all 20 amino acids from water to the center of a dipalmitoylphosphatidylcholine (DPPC) membrane (consists of 256 lipids) by using both directional and torsion angles for conformational sampling. The overall accuracy for the free energy profiles obtained is supported by significant correlation coefficients (correlation coefficient at 0.5-0.6) between our results and previous experimental or computational studies. The free energy profiles indicated that (1) polar amino acids have larger free energy barriers than nonpolar amino acids; (2) negatively charged amino acids are the most difficult to enter into the membrane; and (3) conformational transitions for many amino acids during membrane crossing is the key for reduced free energy barriers. These results represent the first set of simulated free energy profiles of membrane crossing for all 20 amino acids.


SPTLC1 inhibits cell growth via modulating Akt/FOXO1 pathway in renal cell carcinoma cells.

  • Zhenzhen Kong‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

Serine palmitoyltransferase long chain-1 (SPTLC1), which is the rate-limiting enzyme for sphingolipid biosynthesis, has been indicated to be essential for carcinoma cell survival and proliferation in recent, but its role in the regulation of renal cell carcinoma (RCC) remains unknown. In the present study, we found that SPTLC1 expression was significantly decreased in RCC tissues compared to non-tumor tissues, and low SPTLC1 expression was associated with poor overall survival of RCC patients. In addition, our results revealed that forced expression of SPTLC1 could significantly inhibit cell growth in vitro and in vivo via, at least in part, modulating Akt/FOXO1 signaling pathway, thus representing a novel role of SPTLC1 in the regulation of tumor growth in RCC for the first time.


Autophagy inhibition attenuates hyperoxaluria-induced renal tubular oxidative injury and calcium oxalate crystal depositions in the rat kidney.

  • Xiaolu Duan‎ et al.
  • Redox biology‎
  • 2018‎

Hyperoxaluria-induced oxidative injury of renal tubular epithelial cell is a casual and essential factor in kidney calcium oxalate (CaOx) stone formation. Autophagy has been shown to be critical for the regulation of oxidative stress-induced renal tubular injury; however, little is known about its role in kidney CaOx stone formation. In the present study, we found that the autophagy antagonist chloroquine could significantly attenuate oxalate-induced autophagy activation, oxidative injury and mitochondrial damage of renal tubular cells in vitro and in vivo, as well as hyperoxaluria-induced CaOx crystals depositions in rat kidney, whereas the autophagy agonist rapamycin exerted contrasting effects. In addition, oxalate-induced p38 phosphorylation was significantly attenuated by chloroquine pretreatment but was markedly enhanced by rapamycin pretreatment, whereas the protective effect of chloroquine on rat renal tubular cell oxidative injury was partly reversed by a p38 protein kinase activator anisomycin. Furthermore, the knockdown of Beclin1 represented similar effects to chloroquine on oxalate-induced cell oxidative injury and p38 phosphorylation in vitro. Taken together, our results revealed that autophagy inhibition could attenuate oxalate-induced oxidative injury of renal tubular cell and CaOx crystal depositions in the rat kidney via, at least in part, inhibiting the activation of p38 signaling pathway, thus representing a novel role of autophagy in the regulation of oxalate-induced renal oxidative injury and CaOx crystal depositions for the first time.


Comparison of the prognosis for different onset stage of cardiogenic shock secondary to ST-segment elevation myocardial infarction.

  • Shuaihua Qiao‎ et al.
  • BMC cardiovascular disorders‎
  • 2020‎

The study was conducted to evaluate the outcomes of different onset stage of cardiogenic shock (CS) in the patients with ST-segment elevation myocardial infarction (STEMI).


Whole-Genome Sequencing for the Investigation of a Hospital Outbreak of MRSA in China.

  • Zhenzhen Kong‎ et al.
  • PloS one‎
  • 2016‎

Staphylococcus aureus is a globally disseminated drug-resistant bacterial species. It remains a leading cause of hospital-acquired infection, primarily among immunocompromised patients. In 2012, the Affiliated People's Hospital of Jiangsu University experienced a putative outbreak of methicillin-resistant S. aureus (MRSA) that affected 12 patients in the Neurosurgery Department. In this study, whole-genome sequencing (WGS) was used to gain insight into the epidemiology of the outbreak caused by MRSA, and traditional bacterial genotyping approaches were also applied to provide supportive evidence for WGS. We sequenced the DNA from 6 isolates associated with the outbreak. Phylogenetic analysis was constructed by comparing single-nucleotide polymorphisms (SNPs) in the core genome of 6 isolates in the present study and another 3 referenced isolates from GenBank. Of the 6 MRSA sequences in the current study, 5 belonged to the same group, clustering with T0131, while the other one clustered closely with TW20. All of the isolates were identified as ST239-SCCmecIII clones. Whole-genome analysis revealed that four of the outbreak isolates were more tightly clustered into a group and SA13002 together with SA13009 were distinct from the outbreak strains, which were considered non-outbreak strains. Based on the sequencing results, the antibiotic-resistance gene status (present or absent) was almost perfectly concordant with the results of phenotypic susceptibility testing. Various toxin genes were also analyzed successfully. Our analysis demonstrates that using traditional molecular methods and WGS can facilitate the identification of outbreaks and help to control nosocomial transmission.


β-arrestin1-medieated inhibition of FOXO3a contributes to prostate cancer cell growth in vitro and in vivo.

  • Zhenzhen Kong‎ et al.
  • Cancer science‎
  • 2018‎

Recently, β-arrestin1 has been indicated as a prostate cancer promoter through promoting cell proliferation and epithelial to mesenchymal transition, but its underlying mechanism remains unclear. Here, our data revealed that β-arrestin1 could promote cell growth through inhibiting the transcriptional activity and expression of FOXO3a in prostate cancer cells in vitro and in vivo. We found that β-arrestin1 could promote the cell and tumor growth of prostate cancer, and β-arrestin1 expression represented a negative correlation with FOXO3a expression but not FOXO1 expression in prostate cancer cell lines and tissues. In addition, forced expression of β-arrestin1 induced a significant decrease of FOXO3a expression but had no clear effect on FOXO1 expression. Mechanistically, β-arrestin1 could interact with FOXO3a and MDM2, respectively, and promote the interaction between FOXO3a and MDM2, whereas it had no obvious interaction with FOXO1. Furthermore, β-arrestin1 could inhibit the transcriptional activity of FOXO3a via Akt and ERK1/2 pathways. Together, our results revealed a novel mechanism for β-arrestin1 in the regulation of the prostate cancer procession through inhibiting FOXO3a.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: