Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Design, synthesis, in vitro and in vivo anti-respiratory syncytial virus (RSV) activity of novel oxizine fused benzimidazole derivatives.

  • Xiangyu Huo‎ et al.
  • European journal of medicinal chemistry‎
  • 2021‎

Respiratory syncytial virus (RSV) causes serious lower respiratory tract infections. Currently, the only clinical anti-RSV drug is ribavirin, but ribavirin has serious toxic side effect and can only be used by critically ill patients. A series of benzimidazole derivatives were synthesized starting from 1,4:3,6-dianhydro-d-fructose and a variety of o-phenylenediamines. Evaluation of their antiviral activity showed that compound a27 had the highest antiviral activity with a half maximal effective concentration (EC50) of 9.49 μM. Investigation of the antiviral mechanism of compound a27 indicated that it can inhibit the replication of RSV by inhibiting apoptosis and autophagy pathways. Retinoic acid-inducible gene (RIG)-I, TNF receptor associated factor (TRAF)-3, TANK binding kinase (TBK)-1, interferon regulatory factor (IRF)-3, nuclear factor Kappa-B (NF-κB), interferon (IFN)-β, Toll-like receptor (TLR)-3, interleukin (IL)-6 were suppressed at the cellular level. Mouse lung tissue was subjected to hematoxylin and eosin (HE) staining and immunohistochemistry, which showed that RSV antigen and M gene expression could be reduced by compound a27. Decreased expression of RIG-I, IRF-3, IFN-β, TLR-3, IL-6, interleukin (IL)-8, interleukin (IL)-10, inducible nitric oxide synthase (iNOS) and tumor necrosis factor (TNF)-α was also found in vivo.


Ergosterol peroxide exhibits antiviral and immunomodulatory abilities against porcine deltacoronavirus (PDCoV) via suppression of NF-κB and p38/MAPK signaling pathways in vitro.

  • Cong Duan‎ et al.
  • International immunopharmacology‎
  • 2021‎

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus (CoV) that poses economic and public health burdens. Currently, there are no effective antiviral agents against PDCoV. Cryptoporus volvatus often serves as an antimicrobial agent in Traditional Chinese Medicines. This study aimed to evaluate the antiviral activities of ergosterol peroxide (EP) from C. volvatus against PDCoV infection. The inhibitory activity of EP against PDCoV was assessed by using virus titration and performing Quantitative Reverse transcription PCR (RT-qPCR), Western blotting and immunofluorescence assays in LLC-PK1 cells. The mechanism of EP against PDCoV was analyzed by flow cytometry, RT-qPCR and Western blotting. We found that EP treatment inhibited PDCoV infection in LLC-PK1 cells in a dose-dependent manner. Subsequently, we demonstrated that EP blocked virus attachment and entry using RT-qPCR. Time-of-addition assays indicated that EP mainly exerted its inhibitory effect at the early and middle stages in the PDCoV replication cycle. EP also inactivated PDCoV infectivity directly as well as suppressed PDCoV-induced apoptosis. Furthermore, EP treatment decreased the phosphorylation of IκBα and p38 MAPK induced by PDCoV infection as well as the mRNA levels of cytokines (IL-1β, IL-6, IL-12, TNF-α, IFN-α, IFN-β, Mx1 and PKR). These results imply that EP can inhibit PDCoV infection and regulate host immune responses by downregulating the activation of the NF-κB and p38/MAPK signaling pathways in vitro. EP can be used as a potential candidate for the development of a new anti-PDCoV therapy.


Mechanism of selenomethionine inhibiting of PDCoV replication in LLC-PK1 cells based on STAT3/miR-125b-5p-1/HK2 signaling.

  • Zhihua Ren‎ et al.
  • Frontiers in immunology‎
  • 2022‎

There are no licensed therapeutics or vaccines available against porcine delta coronavirus (PDCoV) to eliminate its potential for congenital disease. In the absence of effective treatments, it has led to significant economic losses in the swine industry worldwide. Similar to the current coronavirus disease 2019 (COVID-19) pandemic, PDCoV is trans-species transmissible and there is still a large desert for scientific exploration. We have reported that selenomethionine (SeMet) has potent antiviral activity against PDCoV. Here, we systematically investigated the endogenous immune mechanism of SeMet and found that STAT3/miR-125b-5p-1/HK2 signalling is essential for the exertion of SeMet anti-PDCoV replication function. Meanwhile, HK2, a key rate-limiting enzyme of the glycolytic pathway, was able to control PDCoV replication in LLC-PK1 cells, suggesting a strategy for viruses to evade innate immunity using glucose metabolism pathways. Overall, based on the ability of selenomethionine to control PDCoV infection and transmission, we provide a molecular basis for the development of new therapeutic approaches.


RPA-CRISPR/Cas12a-Based Detection of Haemophilus parasuis.

  • Kunli Zhang‎ et al.
  • Animals : an open access journal from MDPI‎
  • 2023‎

Haemophilus parasuis (H. parasuis, HPS) is a prominent pathogenic bacterium in pig production. Its infection leads to widespread fibrinous inflammation in various pig tissues and organs, often in conjunction with various respiratory virus infections, and leads to substantial economic losses in the pig industry. Therefore, the rapid diagnosis of this pathogen is of utmost importance. In this study, we used recombinase polymerase amplification (RPA) and clustered regularly interspaced short palindromic repeats (CRISPR) technology to establish a convenient detection and analysis system for H. parasuis that is fast to detect, easy to implement, and accurate to analyze, known as RPA-CRISPR/Cas12a analysis. The process from sample to results can be completed within 1 h with high sensitivity (0.163 pg/μL of DNA template, p < 0.05), which is 104 -fold higher than the common PCR method. The specificity test results show that the RPA-CRISPR/Cas12a analysis of H. parasuis did not react with other common pig pathogens, including Streptococcus suis type II and IX, Actinobacillus pleuropneumoniae, Escherichia coli, Salmonella, Streptococcus suis, and Staphylococcus aureus (p < 0.0001). The RPA-CRISPR/Cas12a assay was applied to 15 serotypes of H. parasuis clinical samples through crude extraction of nucleic acid by boiling method, and all of the samples were successfully identified. It greatly reduces the time and cost of nucleic acid extraction. Moreover, the method allows results to be visualized with blue light. The accurate and convenient detection method could be incorporated into a portable format as point-of-care (POC) diagnostics detection for H. parasuis at the field level.


Development of a Directly Visualized Recombinase Polymerase Amplification-SYBR Green I Method for the Rapid Detection of African Swine Fever Virus.

  • Shuai Zhang‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

African swine fever (ASF) is a lethal disease in swine caused by etiologic African swine fever virus (ASFV). The global spread of ASFV has resulted in huge economic losses globally. In the absence of effective vaccines or drugs, pathogen surveillance has been the most important first-line intervention to prevent ASF outbreaks. Among numerous diagnostic methods, recombinase polymerase amplification (RPA)-based detection is capable of producing sensitive and specific results without relying on the use of expensive instruments. However, currently used gene-specific, probe-based RPA for ASFV detection is expensive and time-consuming. To improve the efficiency of ASFV surveillance, a novel directly visualized SYBR Green I-staining RPA (RPAS) method was developed to detect the ASFV genome. SYBR Green I was added to the amplified RPA products for direct visualization by the naked eye. The sensitivity and specificity of this method were confirmed using standard plasmid and inactivated field samples. This method was shown to be highly specific with a detection limit of 103 copies/μl of ASFV in 15 min at 35°C without any cross-reactions with other important porcine viruses selected. In summary, this method enables direct sample visualization with reproducible results for ASFV detection and hence has the potential to be used as a robust tool for ASF prevention and control.


Porcine deltacoronavirus causes diarrhea in various ages of field-infected pigs in China.

  • Bingxiao Li‎ et al.
  • Bioscience reports‎
  • 2019‎

Porcine deltacoronavirus (PDCoV) is a novel coronavirus that causes acute diarrhea in suckling piglets. In Henan province of China, three swine farms broke out diarrhea in different ages of pigs during June of 2017, March of 2018 and January of 2019, respectively. PCR method, Taqman real-time RT-PCR method, sequencing, histopathology and immunohistochemistry (IHC) were conducted with the collected samples, and the results showed that PDCoV was detected among the suckling piglets, commercial fattening pigs and sows with diarrhea. PDCoV-infected suckling piglets were characterized with thin and transparent intestinal walls from colon to caecum, spot hemorrhage at mesentery and intestinal bleeding. PDCoV RNA was detected in multiple organs and tissues by Taqman real-time RT-PCR, which had high copies in ileum, inguinal lymph node, rectum and spleen. PDCoV antigen was detected in the basal layer of jejunum and ileum by IHC. In this research, we found that PDCoV could infect various ages of farmed pigs with watery diarrhea and anorexia in different seasons in a year.


Assessments of different inactivating reagents in formulating transmissible gastroenteritis virus vaccine.

  • Fujie Zhao‎ et al.
  • Virology journal‎
  • 2020‎

Transmissible gastroenteritis virus (TGEV) causes enteric infection in piglets, characterized by vomiting, severe diarrhea and dehydration, and the mortality in suckling piglets is often high up to 100%. Vaccination is an effective measure to control the disease caused by TGEV.


Antiviral Activity of 3D, a Butene Lactone Derivative Against Influenza A Virus In Vitro and In Vivo.

  • Zhenya Wang‎ et al.
  • Viruses‎
  • 2021‎

Influenza A virus is a highly variable and contagious respiratory pathogen that can cause annual epidemics and it poses an enormous threat to public health. Therefore, there is an urgent need for a new generation of antiviral drugs to combat the emergence of drug-resistant strains of the influenza virus. A novel series of butene lactone derivatives were screened and the compound 3D was selected, as it exhibited in vitro potential antiviral activity against A/Weiss/43 H1N1 virus with low toxicity. In addition, 3D dose-dependently inhibited the viral replication, expression of viral mRNA and viral proteins. 3D exerted a suppressive effect on A/Virginia/ATCC2/2009 H1N1 and A/California/2/2014 H3N2 in vitro. The time-of-addition analysis indicated that 3D suppressed H1N1 in the early stage of its life cycle. A/Weiss/43 H1N1-induced apoptosis in A549 cells was reduced by 3D via the mitochondrial apoptosis pathway. 3D could decrease the production of H1N1-induced pro-inflammatory cytokines that are induced by H1N1 in vitro and in vivo. The administration of 3D reduced lung lesions and virus load in vivo. These results suggest that 3D, which is a butene lactone derivative, is a promising agent for the treatment of influenza A virus infection.


Susceptibility of Chickens to Porcine Deltacoronavirus Infection.

  • Qingqing Liang‎ et al.
  • Viruses‎
  • 2019‎

Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus with worldwide distribution. PDCoV belongs to the Deltacoronavirus (DCoV) genus, which mainly includes avian coronaviruses (CoVs). PDCoV has the potential to infect human and chicken cells in vitro, and also has limited infectivity in calves. However, the origin of PDCoV in pigs, the host range, and cross-species infection of PDCoV still remain unclear. To determine whether PDCoV really has the ability to infect chickens in vivo, the three lines of chicken embryos and specific pathogen free (SPF) chickens were inoculated with PDCoV HNZK-02 strain to investigate PDCoV infection in the current study. Our results indicated that PDCoV can infect chicken embryos and could be continuously passaged on them. Furthermore, we observed that PDCoV-inoculated chickens showed mild diarrhea symptoms and low fecal viral RNA shedding. PDCoV RNA could also be detected in multiple organs (lung, kidney, jejunum, cecum, and rectum) and intestinal contents of PDCoV-inoculated chickens until 17 day post-inoculation by real-time quantitative PCR (qRT-PCR). A histology analysis indicated that PDCoV caused mild lesions in the lung, kidney, and intestinal tissues. These results prove the susceptibility of chickens to PDCoV infection, which might provide more insight about the cross-species transmission of PDCoV.


Bioinformatics Analysis of Spike Proteins of Porcine Enteric Coronaviruses.

  • Yan Jia‎ et al.
  • BioMed research international‎
  • 2021‎

This article is aimed at analyzing the structure and function of the spike (S) proteins of porcine enteric coronaviruses, including transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV) by applying bioinformatics methods. The physical and chemical properties, hydrophilicity and hydrophobicity, transmembrane region, signal peptide, phosphorylation and glycosylation sites, epitope, functional domains, and motifs of S proteins of porcine enteric coronaviruses were predicted and analyzed through online software. The results showed that S proteins of TGEV, PEDV, SADS-CoV, and PDCoV all contained transmembrane regions and signal peptide. TGEV S protein contained 139 phosphorylation sites, 24 glycosylation sites, and 53 epitopes. PEDV S protein had 143 phosphorylation sites, 22 glycosylation sites, and 51 epitopes. SADS-CoV S protein had 109 phosphorylation sites, 20 glycosylation sites, and 43 epitopes. PDCoV S protein had 124 phosphorylation sites, 18 glycosylation sites, and 52 epitopes. Moreover, TGEV, PEDV, and PDCoV S proteins all contained two functional domains and two motifs, spike_rec_binding and corona_S2. The corona_S2 consisted of S2 subunit heptad repeat 1 (HR1) and S2 subunit heptad repeat 2 (HR2) region profiles. Additionally, SADS-CoV S protein was predicted to contain only one functional domain, the corona_S2. This analysis of the biological functions of porcine enteric coronavirus spike proteins can provide a theoretical basis for the design of antiviral drugs.


Porcine parvovirus nonstructural protein NS1 activates NF-κB and it involves TLR2 signaling pathway.

  • Xiaohui Jin‎ et al.
  • Journal of veterinary science‎
  • 2020‎

Porcine parvovirus (PPV) is a single-stranded DNA virus that causes porcine reproductive failure. It is of critical importance to study PPV pathogenesis for the prevention and control of the disease. NS1, a PPV non-structural protein, is participated in viral DNA replication, transcriptional regulation, and cytotoxicity. Our previous research showed that PPV can activate nuclear factor kappa B (NF-κB) signaling pathway and then up-regulate the expression of interleukin (IL)-6.


Bumpy structured nanofibrous membrane as a highly efficient air filter with antibacterial and antiviral property.

  • Yanyun Ju‎ et al.
  • The Science of the total environment‎
  • 2021‎

Recently, the pandemic infectious diseases caused by coronavirus have prompted the development of air filter membranes to against infectious agents and protect human health. This research focuses on air filter membrane with antibacterial and antiviral property for high-efficiency particulate matter (PM) removal. Herein, polyamide-6 electrospun nanofibers were anchored with silver nanoparticles through hydrogen-bond. Bumpy nanorough surface and multilevel structure contribute to improve capture capacity, and silver nanoparticles provide a strong ability to inactivate bacteria and virus. In conclusion, this membrane exhibits high PM2.5 filtration efficiency of 99.99% and low pressure drop of 31 Pa; simultaneous removal of multiple aerosol pollutants, e.g., SOx, NOx, methylbenzene, L-Nicotine; superior antibacterial performance against Escherichia coli (Gram negative bacteria) and Staphylococcus aureus (Gram positive bacteria), antiviral property against Porcine Deltacoronavirus and not significant cytotoxicity. Research of air filtration material is important to remove air pollutants and to prevent infection and spread of respiratory infectious diseases.


Preparation of a Single-Chain Antibody against Nucleocapsid Protein of Porcine Deltacoronavirus by Phage Display Technology.

  • Yixuan Zhang‎ et al.
  • Viruses‎
  • 2022‎

Porcine deltacoronavirus (PDCoV) mainly causes severe diarrhea and intestinal pathological damage in piglets and poses a serious threat to pig farms. Currently, no effective reagents or vaccines are available to control PDCoV infection. Single-chain fragment variable (scFv) antibodies can effectively inhibit virus infection and may be a potential therapeutic reagent for PDCoV treatment. In this study, a porcine phage display antibody library from the peripheral blood lymphocytes of piglets infected with PDCoV was constructed and used to select PDCoV-specific scFv. The library was screened with four rounds of biopanning using the PDCoV N protein, and the colony with the highest affinity to the PDCoV N protein was obtained (namely, N53). Then, the N53-scFv gene fragment was cloned into plasmid pFUSE-hIgG-Fc2 and expressed in HEK-293T cells. The scFv-Fc antibody N53 (namely, scFv N53) was purified using Protein A-sepharose. The reactive activity of the purified antibody with the PDCoV N protein was confirmed by indirect enzyme-linked immunosorbent assay (ELISA), western blot and indirect immunofluorescence assay (IFA). Finally, the antigenic epitopes that the scFv N53 recognized were identified by a series of truncated PDCoV N proteins. The amino acid residues 82GELPPNDTPATTRVT96 of the PDCoV N protein were verified as the minimal epitope that can be recognized by the scFv-Fc antibody N53. In addition, the interaction between the scFv-Fc antibody N53 and the PDCoV N protein was further analyzed by molecule docking. In conclusion, our research provides some references for the treatment and prevention of PDCoV.


Polydopamine-based nanomedicines for efficient antiviral and secondary injury protection therapy.

  • Na Yin‎ et al.
  • Science advances‎
  • 2023‎

Viral infections continue to threaten human health. It remains a major challenge to efficiently inhibit viral infection while avoiding secondary injury. Here, we designed a multifunctional nanoplatform (termed as ODCM), prepared by oseltamivir phosphate (OP)-loaded polydopamine (PDA) nanoparticles camouflaged by the macrophage cell membrane (CM). OP can be efficiently loaded onto the PDA nanoparticles through the π-π stacking and hydrogen bonding interactions with a high drug-loading rate of 37.6%. In particular, the biomimetic nanoparticles can accumulate actively in the damaged lung model of viral infection. At the infection site, PDA nanoparticles can consume excess reactive oxygen species and be simultaneously oxidized and degraded to achieve controlled release of OP. This system exhibits enhanced delivery efficiency, inflammatory storm suppression, and viral replication inhibition. Therefore, the system exerts outstanding therapeutic effects while improving pulmonary edema and protecting lung injury in a mouse model of influenza A virus infection.


Structures of a deltacoronavirus spike protein bound to porcine and human receptors.

  • Weiwei Ji‎ et al.
  • Nature communications‎
  • 2022‎

Porcine deltacoronavirus (PDCoV) can experimentally infect a variety of animals. Human infection by PDCoV has also been reported. Consistently, PDCoV can use aminopeptidase N (APN) from different host species as receptors to enter cells. To understand this broad receptor usage and interspecies transmission of PDCoV, we determined the crystal structures of the receptor binding domain (RBD) of PDCoV spike protein bound to human APN (hAPN) and porcine APN (pAPN), respectively. The structures of the two complexes exhibit high similarity. PDCoV RBD binds to common regions on hAPN and pAPN, which are different from the sites engaged by two alphacoronaviruses: HCoV-229E and porcine respiratory coronavirus (PRCoV). Based on structure guided mutagenesis, we identified conserved residues on hAPN and pAPN that are essential for PDCoV binding and infection. We report the detailed mechanism for how a deltacoronavirus recognizes homologous receptors and provide insights into the cross-species transmission of PDCoV.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: