Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

CircDYM ameliorates depressive-like behavior by targeting miR-9 to regulate microglial activation via HSP90 ubiquitination.

  • Yuan Zhang‎ et al.
  • Molecular psychiatry‎
  • 2020‎

Circular RNAs (circRNAs), highly expressed in the central nervous system, are involved in various regulatory processes and implicated in some pathophysiology. However, the potential role of circRNAs in psychiatric diseases, particularly major depressive disorder (MDD), remains largely unknown. Here, we demonstrated that circular RNA DYM (circDYM) levels were significantly decreased both in the peripheral blood of patients with MDD and in the two depressive-like mouse models: the chronic unpredictable stress (CUS) and lipopolysaccharide (LPS) models. Restoration of circDYM expression significantly attenuated depressive-like behavior and inhibited microglial activation induced by CUS or LPS treatment. Further examination indicated that circDYM functions as an endogenous microRNA-9 (miR-9) sponge to inhibit miR-9 activity, which results in a downstream increase of target-HECT domain E3 ubiquitin protein ligase 1 (HECTD1) expression, an increase of HSP90 ubiquitination, and a consequent decrease of microglial activation. Taken together, the results of our study demonstrate the involvement of circDYM and its coupling mechanism in depression, providing translational evidence that circDYM may be a novel therapeutic target for depression.


Methyltransferase Nsd2 Ensures Germinal Center Selection by Promoting Adhesive Interactions between B Cells and Follicular Dendritic Cells.

  • Jingjing Chen‎ et al.
  • Cell reports‎
  • 2018‎

Antibody affinity maturation, which is an antigen-based selection process for B cells, occurs in germinal centers (GCs). GCB cells must efficiently recognize, acquire, and present antigens from follicular dendritic cells (FDCs) to receive positive selection signals from T helper cells. Previous studies showed that GCB cells undergo adhesive interactions with FDCs, but the regulatory mechanisms underlying the cell adhesions and their functional relevance remain unclear. Here, we identified H3K36me2 methyltransferase Nsd2 as a critical regulator of GCB cell-FDC adhesion. Nsd2 deletion modestly reduced GC responses but strongly impaired B cell affinity maturation. Mechanistically, Nsd2 directly regulated expression of multiple actin polymerization-related genes in GCB cells. Nsd2 loss reduced B cell adhesion to FDC-expressed adhesion molecules, thus affecting both B cell receptor (BCR) signaling and antigen acquisition. Overall, Nsd2 coordinates GCB positive selection by enhancing both BCR signaling and T cell help.


Molecular mechanisms underlying the involvement of the sigma-1 receptor in methamphetamine-mediated microglial polarization.

  • Jie Chao‎ et al.
  • Scientific reports‎
  • 2017‎

Our previous study demonstrated that the sigma-1 receptor is involved in methamphetamine-induced microglial apoptosis and death; however, whether the sigma-1 receptor is involved in microglial activation as well as the molecular mechanisms underlying this process remains poorly understood. The aim of this study is to demonstrate the involvement of the sigma-1 receptor in methamphetamine-mediated microglial activation. The expression of σ-1R, iNOS, arginase and SOCS was examined by Western blot; activation of cell signaling pathways was detected by Western blot analysis. The role of σ-1R in microglial activation was further validated in C57BL/6 N WT and sigma-1 receptor knockout mice (male, 6-8 weeks) injected intraperitoneally with saline or methamphetamine (30 mg/kg) by Western blot combined with immunostaining specific for Iba-1. Treatment of cells with methamphetamine (150 μM) induced the expression of M1 markers (iNOS) with concomitant decreased the expression of M2 markers (Arginase) via its cognate sigma-1 receptor followed by ROS generation. Sequential activation of the downstream MAPK, Akt and STAT3 pathways resulted in microglial polarization. Blockade of sigma-1 receptor significantly inhibited the generation of ROS and activation of the MAPK and Akt pathways. These findings underscore the critical role of the sigma-1 receptor in methamphetamine-induced microglial activation.


SETD2 Restricts Prostate Cancer Metastasis by Integrating EZH2 and AMPK Signaling Pathways.

  • Huairui Yuan‎ et al.
  • Cancer cell‎
  • 2020‎

The level of SETD2-mediated H3K36me3 is inversely correlated with that of EZH2-catalyzed H3K27me3. Nevertheless, it remains unclear whether these two enzymatic activities are molecularly intertwined. Here, we report that SETD2 delays prostate cancer (PCa) metastasis via its substrate EZH2. We show that SETD2 methylates EZH2 which promotes EZH2 degradation. SETD2 deficiency induces a Polycomb-repressive chromatin state that enables cells to acquire metastatic traits. Conversely, mice harboring nonmethylated EZH2 mutant or SETD2 mutant defective in binding to EZH2 develop metastatic PCa. Furthermore, we identify that metformin-stimulated AMPK signaling converges at FOXO3 to stimulate SETD2 expression. Together, our results demonstrate that the SETD2-EZH2 axis integrates metabolic and epigenetic signaling to restrict PCa metastasis.


FUS aggregation following ischemic stroke favors brain astrocyte activation through inducing excessive autophagy.

  • Shusheng Wu‎ et al.
  • Experimental neurology‎
  • 2022‎

As is the case with neurodegenerative diseases, abnormal accumulation of aggregated proteins in neurons and glial are also known to implicate in the pathogenesis of ischemic stroke. However, the potential role of protein aggregates in brain ischemia remains largely unknown. Fused in Sarcoma (FUS) protein has a vital role in RNA metabolism and regulating cellular homeostasis. FUS pathology has been demonstrated in the formation of toxic aggregates and critically affecting cell viability in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but whether this also applies to neurological injury following cerebral ischemia is unclear. Herein, we demonstrated a critical role of aggregated FUS in astrocyte activation caused by cerebral ischemia and a possible underlying molecular mechanism. Cerebral ischemic injury significantly induced the formation of cytoplasmic FUS aggregates in reactive astrocytes and injured neurons, thereby aggravating neurofunctional damages and worsening stroke outcomes. Further analysis revealed that extranuclear aggregation of FUS in astrocytes was involved in the induction of excessive autophagy, which contributes to autophagic cell injury or death. In conclusion, our results reveal the important contribution of FUS aggregates in promoting astrocyte activation in stroke pathology independent of its transcriptional regulation activity. We thus propose that aggregation of FUS is an important pathological process in ischemic stroke and targeting FUS aggregates might be of unique therapeutic value in the development of future treatment strategies for ischemic stroke.


Involvement of NLRP3 inflammasome in methamphetamine-induced microglial activation through miR-143/PUMA axis.

  • Longfei Du‎ et al.
  • Toxicology letters‎
  • 2019‎

Nod-like Receptor Protein 3 (NLRP3) inflammasome activation is known to lead to microglia-mediated neuroinflammation. Methamphetamine is known to induce microglial activation. However, whether NLRP3 inflammasome activation contributes to the microglial activation induced by methamphetamine remains elusive. P53-up-regulated modulator of apoptosis (PUMA) is a known apoptosis inducer; however, their role in microglial activation remains poorly understood. Methamphetamine treatment induced NLRP3 inflammasome activation as well microglial activation in animal model. Intriguingly, downregulation of PUMA significantly inhibited the activation of microglia. Methamphetamine treatment increased the expression of PUMA at protein level but not mRNA level. Further study indicated that PUMA expression was regulated at post-transcriptional level by miR-143, which was decreased in methamphetamine-treated cells via the negative transcription factor nuclear factor-kappa B1 (NF-κB1). Using gain- and loss-of-function approaches, we identified a unique role of miR-143/PUMA in mediating microglial activation via regulation of NLRP3 inflammasome activation. These findings provide new insight regarding the specific contributions of the miR-143/PUMA pathway to NLRP3 inflammasome activation in the context of drug abuse.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: