Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 329 papers

Mutational analysis in early-onset familial Alzheimer's disease in Mainland China.

  • Bin Jiao‎ et al.
  • Neurobiology of aging‎
  • 2014‎

Mutations of 3 causative genes, namely presenilin 1 (PSEN1), presenilin 2 (PSEN2), and amyloid precursor protein (APP), have been identified as the major causes of early-onset familial Alzheimer's disease (EOFAD). Recently, a GGGGCC repeat expansion in the noncoding region of C9orf72 was also detected in some patients with clinically diagnosed familial Alzheimer's disease. The prevalence of causative gene mutations in patients with EOFAD has been reported in previous studies but their prevalence remains unclear in Mainland China. The aim of this study was to characterize the common causative gene mutation spectrum and genotype-phenotype correlations in Chinese patients with EOFAD. Genetic screening for mutations in PSEN1, PSEN2, and APP was conducted in a total of 32 families with clinical diagnoses of EOFAD from Mainland China. Subsequently, a hexanucleotide repeat expansion in C9orf72 was detected in all patients. Four novel mutations in PSEN1 (p.A434T, p.I167del, p.F105C, and p.L248P) were identified in 4 respective families, and 1 previously recognized pathogenic mutation in APP (p.V717I) was detected in another 2 unrelated families. The PSEN2 mutation and pathogenic repeat expansions of C9orf72 were not detected in all patients. To the best of our knowledge, this is the first cohort report of a causative gene screen in patients with EOFAD in Mainland China. The analysis of the genetic-clinical correlations in this cohort supports the idea that the clinical phenotype might be influenced by specific genetic defects.


ATP1A3 mutations and genotype-phenotype correlation of alternating hemiplegia of childhood in Chinese patients.

  • Xiaoling Yang‎ et al.
  • PloS one‎
  • 2014‎

Alternating hemiplegia of childhood (AHC) is a rare and severe neurological disorder. ATP1A3 was recently identified as the causative gene. Here we report the first genetic study in Chinese AHC cohort. We performed whole-exome sequencing on three trios and three unrelated patients, and screened additional 41 typical cases and 100 controls by PCR-Sanger sequencing. ATP1A3 mutations were detected in 95.7% of typical AHC patients. At least 93.3% were de novo. Four late onset, atypical AHC patients were also mutation positive, suggesting the need for testing ATP1A3 mutations in atypical cases. Totally, 13 novel missense mutations (T370N, G706R, L770R, T771N, T771I, S772R, L802P, D805H, M806K, P808L, I810N, L839P and G893R) were identified in our study. By homology modeling of the mutant protein structures and calculation of an extensive list of molecular features, we identified two statistically significant molecular features, solvent accessibility and distance to metal ion, that distinguished disease-associated mutations from neutral variants. A logistic regression classifier achieved 92.9% accuracy by the average of 100 times of five-fold cross validations. Genotype-phenotype correlation analysis showed that patients with epilepsy were more likely to carry E815K mutation. In summary, ATP1A3 is the major pathogenic gene of AHC in Chinese patients; mutations have distinctive molecular features that discriminate them from neutral variants and are correlated with phenotypes.


Identification of AcAP5 as a novel factor Xa inhibitor with both direct and allosteric inhibition.

  • Yuanjun Zhu‎ et al.
  • Biochemical and biophysical research communications‎
  • 2017‎

Ancylostoma caninum anticoagulant peptide 5 (AcAP5) is a potent inhibitor for coagulation factor Xa (FXa). Previous studies show that AcAP5 binds to FXa at the active site, and/or the exosite. The active site-binding contributes to direct blocking of FXa catalytic activity, but the effect of exosite-binding and the underlying mechanism remain unknown. To investigate whether and how the exosite-binding affects FXa function, we prepared several AcAP5 mutants with modifications to the active site-binding or exosite-binding region. Their FXa-inhibiting and anticoagulant activities were examined both in vitro and in rabbit plasma, and the interactions with FXa were analyzed using in silico molecular modeling, docking, and molecular dynamics simulation. Mutants abolishing either active site- or exosite-binding resulted in a dramatic decrease in their anti-FXa and anticoagulant activities. Elongation of AcAP5 exosite-binding region also impaired the FXa-inhibiting activity. Computational analysis demonstrated that the conformation of FXa becomes more rigid due to exosite-binding with AcAP5, which consequently affects its catalytic activity. Our results suggest that both active site- and exosite-binding contribute to the FXa inhibitory activity of AcAP5.


The effects of bariatric procedures versus medical therapy for obese patients with type 2 diabetes: meta-analysis of randomized controlled trials.

  • Xiaohu Guo‎ et al.
  • BioMed research international‎
  • 2013‎

To assess the effects of bariatric surgery versus medical therapy for type 2 diabetes mellitus.


Polygenic Analysis of Late-Onset Alzheimer's Disease from Mainland China.

  • Bin Jiao‎ et al.
  • PloS one‎
  • 2015‎

Recently, a number of single nucleotide polymorphisms (SNPs) were identified to be associated with late-onset Alzheimer disease (LOAD) through genome-wide association study data. Identification of SNP-SNP interaction played an important role in better understanding genetic basis of LOAD. In this study, fifty-eight SNPs were screened in a cohort of 229 LOAD cases and 318 controls from mainland China, and their interaction was evaluated by a series of analysis methods. Seven risk SNPs and six protective SNPs were identified to be associated with LOAD. Risk SNPs included rs9331888 (CLU), rs6691117 (CR1), rs4938933 (MS4A), rs9349407 (CD2AP), rs1160985 (TOMM40), rs4945261 (GAB2) and rs5984894 (PCDH11X); Protective SNPs consisted of rs744373 (BIN1), rs1562990 (MS4A), rs597668 (EXOC3L2), rs9271192 (HLA-DRB5/DRB1), rs157581 and rs11556505 (TOMM40). Among positive SNPs presented above, we found the interaction between rs4938933 (risk) and rs1562990 (protective) in MS4A weakened their each effect for LOAD; for three significant SNPs in TOMM40, their cumulative interaction induced the two protective SNPs effects lost and made the risk SNP effect aggravate for LOAD. Finally, we found rs6656401-rs3865444 (CR1-CD33) pairs were significantly associated with decreasing LOAD risk, while rs28834970-rs6656401 (PTK2B-CR1), and rs28834970-rs6656401 (PTK2B-CD33) were associated with increasing LOAD risk. In a word, our study indicates that SNP-SNP interaction existed in the same gene or cross different genes, which could weaken or aggravate their initial single effects for LOAD.


Chronic administration of methamphetamine promotes atherosclerosis formation in ApoE-/- knockout mice fed normal diet.

  • Bo Gao‎ et al.
  • Atherosclerosis‎
  • 2015‎

Chronic methamphetamine (METH) abuse could induce neurotoxicity due to reactive oxygen species generation and sympathetic activation. Both factors are associated with atherosclerosis, so we tested the hypothesis that chronic METH administration might also promote atherosclerosis formation in Apo E-/- knockout mice fed normal diet.


Genome Wide Association Study Identifies L3MBTL4 as a Novel Susceptibility Gene for Hypertension.

  • Xin Liu‎ et al.
  • Scientific reports‎
  • 2016‎

Hypertension is a major global health burden and a leading risk factor for cardiovascular diseases. Although its heritability has been documented previously, contributing loci identified to date account for only a small fraction of blood pressure (BP) variation, which strongly suggests the existence of undiscovered variants. To identify novel variants, we conducted a three staged genetic study in 21,990 hypertensive cases and normotensive controls. Four single nucleotide polymorphisms (SNPs) at three new genes (L3MBTL4 rs403814, Pmeta = 6.128 × 10(-9); LOC729251, and TCEANC) and seven SNPs at five previously reported genes were identified as being significantly associated with hypertension. Through functional analysis, we found that L3MBTL4 is predominantly expressed in vascular smooth muscle cells and up-regulated in spontaneously hypertensive rats. Rats with ubiquitous over-expression of L3MBTL4 exhibited significantly elevated BP, increased thickness of the vascular media layer and cardiac hypertrophy. Mechanistically, L3MBTL4 over-expression could lead to down-regulation of latent transforming growth factor-β binding protein 1 (LTBP1), and phosphorylation activation of the mitogen-activated protein kinases (MAPK) signaling pathway, which is known to trigger the pathological progression of vascular remodeling and BP elevation. These findings pinpointed L3MBTL4 as a critical contributor to the development and progression of hypertension and uncovers a novel target for therapeutic intervention.


Association of the interleukin 1 beta gene and brain spontaneous activity in amnestic mild cognitive impairment.

  • Liying Zhuang‎ et al.
  • Journal of neuroinflammation‎
  • 2012‎

The inflammatory response has been associated with the pathogenesis of Alzheimer's disease (AD). The purpose of this study is to determine whether the rs1143627 polymorphism of the interleukin-1 beta (IL-1β) gene moderates functional magnetic resonance imaging (fMRI)-measured brain regional activity in amnestic mild cognitive impairment (aMCI).


Loss of miR-143 and miR-145 in condyloma acuminatum promotes cellular proliferation and inhibits apoptosis by targeting NRAS.

  • Xiaoyan Liu‎ et al.
  • Royal Society open science‎
  • 2018‎

The expression profile of miRNAs and their function in condyloma acuminatum (CA) remains unknown. In this study, we aimed to detect the effects of miR-143 and miR-145, the most downregulated in CA samples using high-throughput sequencing, on cell proliferation and apoptosis, to determine a novel therapeutic target for CA recurrence. RT-qPCR was used to validate the lower expression of miR-143 and miR-145 in a larger size of CA samples, and the expression of NRAS in CA samples was significantly higher than self-controls as determined by western blotting assay. Luciferase assay was performed to confirm that miR-143 or miR-145 targeted NRAS directly. Transduction of LV-pre-miR-143 or LV-pre-miR-145 to human papilloma virus (HPV)-infected SiHa cells led to reduced proliferation, greater apoptosis and inhibition of expression of NRAS, PI3 K p110α and p-AKT. However, knockout of miR-143 or miR-145 in human epidermal keratinocytes by delivery of CRISPR/CAS9-gRNA for target miRNAs protected cells from apoptosis and upregulated expression of target genes as described above. MiR-143 and miR-145 sensitized cells to nutlin-3a, a p53 activator and MDM2 antagonist, while their loss protected cells from the stress of nutlin-3a. Furthermore, siRNA targeting NRAS showed similar effects on proliferation and apoptosis as miR-143 or miR-145. Taken together, our results suggest that loss of miR-143 or miR-145 in CA protects HPV-infected cells from apoptosis induced by environmental stress, in addition to promoting cellular proliferation and inhibiting apoptosis by targeting NRAS/PI3 K/ATK. Restoration of miR-143 or miR-145 might provide an applicable and novel approach to block the recurrence and progression of CA.


Non defect-stabilized thermally stable single-atom catalyst.

  • Rui Lang‎ et al.
  • Nature communications‎
  • 2019‎

Surface-supported isolated atoms in single-atom catalysts (SACs) are usually stabilized by diverse defects. The fabrication of high-metal-loading and thermally stable SACs remains a formidable challenge due to the difficulty of creating high densities of underpinning stable defects. Here we report that isolated Pt atoms can be stabilized through a strong covalent metal-support interaction (CMSI) that is not associated with support defects, yielding a high-loading and thermally stable SAC by trapping either the already deposited Pt atoms or the PtO2 units vaporized from nanoparticles during high-temperature calcination. Experimental and computational modeling studies reveal that iron oxide reducibility is crucial to anchor isolated Pt atoms. The resulting high concentrations of single atoms enable specific activities far exceeding those of conventional nanoparticle catalysts. This non defect-stabilization strategy can be extended to non-reducible supports by simply doping with iron oxide, thus paving a new way for constructing high-loading SACs for diverse industrially important catalytic reactions.


Excessive Oxidative Stress Contributes to Increased Acute ER Stress Kidney Injury in Aged Mice.

  • Xiaoyan Liu‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2019‎

The aged kidney is susceptible to acute injury due presumably to its decreased ability to handle additional challenges, such as endoplasmic reticulum (ER) stress. This was tested by giving tunicamycin, an ER stress inducer, to either old or young mice. Injection of high dose caused renal failure in old mice, not in young mice. Moreover, injection of low dose resulted in severe renal damage in old mice, confirming the increased susceptibility of aged kidney to ER stress. There existed an abnormality in ER stress response kinetics in aged kidney, characterized by a loss of XBP-1 splicing and decreased PERK-eIF2α phosphorylation at late time point. The presence of excessive oxidative stress in aged kidney may play a role since high levels of oxidation increased ER stress-induced cell death and decreased IRE1 levels and XBP-1 splicing. Importantly, treatment with antioxidants protected old mice from kidney injury and normalized IRE1 and XBP-1 responses. Furthermore, older mice (6 months old) transgenic with antioxidative stress AGER1 were protected from ER stress-induced kidney injury. In conclusion, the decreased ability to handle ER stress, partly due to the presence of excessive oxidative stress, may contribute to increased susceptibility of the aging kidney to acute injury.


Repeat: a framework to assess empirical reproducibility in biomedical research.

  • Leslie D McIntosh‎ et al.
  • BMC medical research methodology‎
  • 2017‎

The reproducibility of research is essential to rigorous science, yet significant concerns of the reliability and verifiability of biomedical research have been recently highlighted. Ongoing efforts across several domains of science and policy are working to clarify the fundamental characteristics of reproducibility and to enhance the transparency and accessibility of research.


Altered Channel Conductance States and Gating of GABAA Receptors by a Pore Mutation Linked to Dravet Syndrome.

  • Ciria C Hernandez‎ et al.
  • eNeuro‎
  • 2017‎

We identified a de novo missense mutation, P302L, in the γ-aminobutyric acid type A (GABAA) receptor γ2 subunit gene GABRG2 in a patient with Dravet syndrome using targeted next-generation sequencing. The mutation was in the cytoplasmic portion of the transmembrane segment M2 of the γ2 subunit that faces the pore lumen. GABAA receptor α1 and β3 subunits were coexpressed with wild-type (wt) γ2L or mutant γ2L(P302L) subunits in HEK 293T cells and cultured mouse cortical neurons. We measured currents using whole-cell and single-channel patch clamp techniques, surface and total expression levels using surface biotinylation and Western blotting, and potential structural perturbations in mutant GABAA receptors using structural modeling. The γ2(P302L) subunit mutation produced an ∼90% reduction of whole-cell current by increasing macroscopic desensitization and reducing GABA potency, which resulted in a profound reduction of GABAA receptor-mediated miniature IPSCs (mIPSCs). The conductance of the receptor channel was reduced to 24% of control conductance by shifting the relative contribution of the conductance states from high- to low-conductance levels with only slight changes in receptor surface expression. Structural modeling of the GABAA receptor in the closed, open, and desensitized states showed that the mutation was positioned to slow activation, enhance desensitization, and shift channels to a low-conductance state by reshaping the hour-glass-like pore cavity during transitions between closed, open, and desensitized states. Our study revealed a novel γ2 subunit missense mutation (P302L) that has a novel pathogenic mechanism to cause defects in the conductance and gating of GABAA receptors, which results in hyperexcitability and contributes to the pathogenesis of the genetic epilepsy Dravet syndrome.


A Chinese herbal decoction, Jian-Pi-Yi-Shen, regulates the expressions of erythropoietin and pro-inflammatory cytokines in cultured cells.

  • Jianping Chen‎ et al.
  • BMC complementary and alternative medicine‎
  • 2018‎

A Chinese herbal formula, namely Jian-Pi-Yi-Shen (JPYS), has been clinically prescribed for patients with chronic kidney disease associated-anemia, and which can improve the patient's immunological system. However, the mechanisms of JPYS involved in anemia and immune response have not been investigated. To study the role of JPYS in regulating hematopoietic and immunological functions, we investigated its activities on the expressions of erythropoietin and pro-inflammatory cytokines in cultured cells.


A Chinese Herbal Preparation, Xiao-Er-An-Shen Decoction, Exerts Neuron Protection by Modulation of Differentiation and Antioxidant Activity in Cultured PC12 Cells.

  • Zhonggui Li‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2018‎

Xiao-Er-An-Shen Decoction (XEASD), a Chinese herbal formula, has been used in clinic for treating insomnia and mental excitement in children and adolescents. However, less of scientific data supports its effectiveness in clinic. Here, we aim to study the role of XEASD in regulating neuron differentiation and antioxidant activity. An HPLC-MS was used to chemically standardize herbal extract of XEASD. The standardized herbal extracts of XEASD (0.3-3.0 mg/mL) were applied onto cultured PC12 cells for 48 hours. The treatment with XEASD extract induced neurite outgrowth of PC12 cells in a dose-dependent manner, having the highest response by ~50% of differentiated cells. Application of XEASD extract dose dependently stimulated expressions of NF68, NF160, and NF200 in cultured PC12 cells. Furthermore, XEASD activated the phosphorylation of cAMP responsive element binding protein on PC12 cells, the effect of which was blocked by H89, a protein kinase A inhibitor. Moreover, XEASD showed free radical scavenging activity and stimulated the transcriptional activity of ARE. These results supported the neurobeneficial effects of XEASD in the induction of neurite outgrowth and protection against oxidative stress and could be useful for neurological diseases, in which neurotrophin deficiency and oxidation insult are involved.


Loss of SIRT4 promotes the self-renewal of Breast Cancer Stem Cells.

  • Lutao Du‎ et al.
  • Theranostics‎
  • 2020‎

Rationale: It has been proposed that cancer stem/progenitor cells (or tumor-initiating cells, TICs) account for breast cancer initiation and progression. Sirtuins are nicotinamide adenine dinucleotide (NAD+)-dependent class-III histone deacetylases and mediate various basic biological processes, including metabolic homeostasis. However, interplay and cross-regulation among the sirtuin family are not fully understood. As one of the least studied sirtuin family members, the mitochondrial sirtuin SIRT4 is a tumor suppressor gene in various cancers. However, its role in cancer stemness, as well as initiation and progression of breast cancer, remains unknown. Methods: The expression of SIRT4 in breast cancer was analyzed using the TCGA breast cancer database and 3 GSEA data. Normal breast epithelial cells MCF10A and breast cancer cell lines MCF-7, MDA-MB-231, BT549, MDA-MB-468 were used to establish SIRT4 gene knockdown and corresponding overexpression cells. Identified MTT cytotoxicity assays, cell invasion and motility assay, sorting of SP, confocal immunofluorescence microscopy, mouse mammary stem cell analysis, glutamine and glucose production, clonogenic and sphere-formation assay, mass spectrometric metabolomics analysis and ChIP-seq to further explore SIRT4 biological role in breast cancer. Results: We elucidated a novel role for SIRT4 in the negative regulation of mammary gland development and stemness, which is related to the mammary tumorigenesis. We also uncovered an inverse correlation between SIRT4 and SIRT1. Most importantly, SIRT4 negatively regulates SIRT1 expression via repressing glutamine metabolism. Besides, we identified H4K16ac and BRCA1 as new prime targets of SIRT4 in breast cancer. Conclusions: These results demonstrate that SIRT4 exerts its tumor-suppressive activity via modulating SIRT1 expression in breast cancer and provide a novel cross-talk between mitochondrial and nuclear sirtuins.


Positive tumour CD47 expression is an independent prognostic factor for recurrence in resected non-small cell lung cancer.

  • Yan Xu‎ et al.
  • ESMO open‎
  • 2020‎

Immunotherapy is a promising advance in oncology. Limited information exists regarding the interrelationship between CD47 expression and tumour-associated macrophage-related immuno-microenvironment in patients with non-small cell lung cancer (NSCLC). These factors may predict novel immunotherapy efficacy.


Pilot trial on the efficacy and safety of pantethine in children with pantothenate kinase-associated neurodegeneration: a single-arm, open-label study.

  • Xuting Chang‎ et al.
  • Orphanet journal of rare diseases‎
  • 2020‎

This study aimed to explore the efficacy and safety of pantethine in children with pantothenate kinase-associated neurodegeneration (PKAN).


Vital Roles of Gremlin-1 in Pulmonary Arterial Hypertension Induced by Systemic-to-Pulmonary Shunts.

  • Liukun Meng‎ et al.
  • Journal of the American Heart Association‎
  • 2020‎

Background Heterozygous mutation in BMP (bone morphogenetic protein) receptor 2 is rare, but BMP cascade suppression is common in congenital heart disease-associated pulmonary arterial hypertension (CHD-PAH); however, the underling mechanism of BMP cascade suppression independent of BMP receptor 2 mutation is unknown. Methods and Results Pulmonary hypertensive status observed in CHD-PAH was surgically reproduced in rats. Gremlin-1 expression was increased, but BMP cascade was suppressed, in lungs from CHD-PAH patients and shunted rats, whereas shunt correction retarded these trends in rats. Immunostaining demonstrated increased gremlin-1 was mainly in the endothelium and media of remodeled pulmonary arteries. However, mechanical stretch time- and amplitude-dependently stimulated gremlin-1 secretion and suppressed BMP cascade in distal pulmonary arterial smooth muscle cells from healthy rats. Under static condition, gremlin-1 significantly promoted the proliferation and inhibited the apoptosis of distal pulmonary arterial smooth muscle cells from healthy rats via BMP cascade. Furthermore, plasma gremlin-1 closely correlated with hemodynamic parameters in CHD-PAH patients and shunted rats. Conclusions Serving as an endogenous antagonist of BMP cascade, the increase of gremlin-1 in CHD-PAH may present a reasonable mechanism explanation for BMP cascade suppression independent of BMP receptor 2 mutation.


Genetic analysis of benign familial epilepsies in the first year of life in a Chinese cohort.

  • Qi Zeng‎ et al.
  • Journal of human genetics‎
  • 2018‎

Benign familial epilepsies that present themselves in the first year of life include benign familial neonatal epilepsy (BFNE), benign familial neonatal-infantile epilepsy (BFNIE) and benign familial infantile epilepsy (BFIE). We used Sanger sequencing and targeted next-generation sequencing to detect gene mutations in a Chinese cohort of patients with these three disorders. A total of 79 families were collected, including 4 BFNE, 7 BFNIE, and 68 BFIE. Genetic testing led to the identification of gene mutations in 60 families (60 out of 79, 75.9%). A total of 42 families had PRRT2 mutations, 9 had KCNQ2 mutations, 8 had SCN2A mutations, and 1 had a GABRA6 mutation. In total three of four BFNE families were detected with KCNQ2 mutations. Mutations were detected in all BFNIE families, including 3 KCNQ2 mutations, 3 SCN2A mutations, and 1 PRRT2 mutation. Gene mutations were identified in 50 out of 68 BFIE families (73.5%), including 41 PRRT2 mutations (41 out of 68, 60.3%), 5 SCN2A mutations, 3 KCNQ2 mutations, and 1 GABRA6 mutation. Our results confirmed that mutations in KCNQ2, SCN2A, and PRRT2 are major genetic causes of benign familial epilepsy in the first year of life in the Chinese population. KCNQ2 is the major gene related to BFNE. PRRT2 is the main gene responsible for BFIE.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: