Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Promoting Shewanella Bidirectional Extracellular Electron Transfer for Bioelectrocatalysis by Electropolymerized Riboflavin Interface on Carbon Electrode.

  • Long Zou‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

The extracellular electron transfer (EET) that connects the intracellular metabolism of electroactive microorganisms to external electron donors/acceptors, is the foundation to develop diverse microbial electrochemical technologies. For a particular microbial electrochemical device, the surface chemical property of an employed electrode material plays a crucial role in the EET process owing to the direct and intimate biotic-abiotic interaction. The functional modification of an electrode surface with redox mediators has been proposed as an effectual approach to promote EET, but the underlying mechanism remains unclear. In this work, we investigated the enhancement of electrochemically polymerized riboflavin interface on the bidirectional EET of Shewanella putrefaciens CN32 for boosting bioelectrocatalytic ability. An optimal polyriboflavin functionalized carbon cloth electrode achieved about 4.3-fold output power density (∼707 mW/m2) in microbial fuel cells and 3.7-fold cathodic current density (∼0.78 A/m2) for fumarate reduction in three-electrode cells compared to the control, showing great increases in both outward and inward EET rates. Likewise, the improvement was observed for polyriboflavin-functionalized graphene electrodes. Through comparison between wild-type strain and outer-membrane cytochrome (MtrC/UndA) mutant, the significant improvements were suggested to be attributed to the fast interfacial electron exchange between the polyriboflavin interface with flexible electrochemical activity and good biocompatibility and the outer-membrane cytochromes of the Shewanella strain. This work not only provides an effective approach to boost microbial electrocatalysis for energy conversion, but also offers a new demonstration of broadening the applications of riboflavin-functionalized interface since the widespread contribution of riboflavin in various microbial EET pathways together with the facile electropolymerization approach.


The product of waist and neck circumference outperforms traditional anthropometric indices in identifying metabolic syndrome in Chinese adults with type 2 diabetes: a cross-sectional study.

  • Yunhong Huang‎ et al.
  • Diabetology & metabolic syndrome‎
  • 2021‎

Traditional anthropometric indices are used in diagnosing metabolic syndrome (MetS). This study aimed to propose a novel index, a product of waist and neck circumferences (PWNC), and compared its value with traditional anthropometric parameters in identifying the presence of MetS in Chinese adults with type 2 diabetes mellitus (T2DM).


G protein-biased GPR3 signaling ameliorates amyloid pathology in a preclinical Alzheimer's disease mouse model.

  • Yunhong Huang‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

Biased G protein-coupled receptor (GPCR) ligands, which preferentially activate G protein or β-arrestin signaling pathways, are leading to the development of drugs with superior efficacy and reduced side effects in heart disease, pain management, and neuropsychiatric disorders. Although GPCRs are implicated in the pathophysiology of Alzheimer's disease (AD), biased GPCR signaling is a largely unexplored area of investigation in AD. Our previous work demonstrated that GPR3-mediated β-arrestin signaling modulates amyloid-β (Aβ) generation in vitro and that Gpr3 deficiency ameliorates Aβ pathology in vivo. However, Gpr3-deficient mice display several adverse phenotypes, including elevated anxiety-like behavior, reduced fertility, and memory impairment, which are potentially associated with impaired G protein signaling. Here, we generated a G protein-biased GPR3 mouse model to investigate the physiological and pathophysiological consequences of selective elimination of GPR3-mediated β-arrestin signaling in vivo. In contrast to Gpr3-deficient mice, G protein-biased GPR3 mice do not display elevated anxiety levels, reduced fertility, or cognitive impairment. We further determined that G protein-biased signaling reduces soluble Aβ levels and leads to a decrease in the area and compaction of amyloid plaques in the preclinical AppNL-G-F AD mouse model. The changes in amyloid pathology are accompanied by robust microglial and astrocytic hypertrophy, which suggest a protective glial response that may limit amyloid plaque development in G protein-biased GPR3 AD mice. Collectively, these studies indicate that GPR3-mediated G protein and β-arrestin signaling produce discrete and separable effects and provide proof of concept for the development of safer GPCR-targeting therapeutics with more directed pharmacological action for AD.


NfiS, a species-specific regulatory noncoding RNA of Pseudomonas stutzeri, enhances oxidative stress tolerance in Escherichia coli.

  • Guihua Hu‎ et al.
  • AMB Express‎
  • 2019‎

Noncoding RNAs (ncRNAs) can finely control the expression of target genes at the posttranscriptional level in prokaryotes. Regulatory small RNAs (sRNAs) designed to control target gene expression for applications in metabolic engineering and synthetic biology have been successfully developed and used. However, the effect on the heterologous expression of species- or strain-specific ncRNAs in other bacterial strains remains poorly understood. In this work, a Pseudomonas stutzeri species-specific regulatory ncRNA, NfiS, which has been shown to play an important role in the response to oxidative stress as well as osmotic stress in P. stutzeri A1501, was cloned and transferred to the Escherichia coli strain Trans10. Recombinant NfiS-expressing E. coli, namely, Trans10-nfiS, exhibited significant enhancement of tolerance to oxidative stress. To map the possible gene regulatory networks mediated by NfiS in E. coli under oxidative stress, a microarray assay was performed to delineate the transcriptomic differences between Trans10-nfiS and wild-type E. coli under H2O2 shock treatment conditions. In all, 1184 genes were found to be significantly altered, and these genes were divided into mainly five functional categories: stress response, regulation, metabolism related, transport or membrane protein and unknown function. Our results suggest that the P. stutzeri species-specific ncRNA NfiS acts as a regulator that integrates adaptation to H2O2 with other cellular stress responses and helps protect E. coli cells against oxidative damage.


Obesity-induced upregulation of miR-361-5p promotes hepatosteatosis through targeting Sirt1.

  • Zhijian Zhang‎ et al.
  • Metabolism: clinical and experimental‎
  • 2018‎

Obesity is associated with an increased risk of many metabolic disorders, including non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms remain poorly understood. Recent studies have demonstrated that MicroRNA-mediated gene silencing plays an important role in hepatic triglyceride (TG) metabolism. In the present study, we aimed to investigate the pathological function of miR-361-5p in the development of NAFLD.


Characterization of Mineral and Bone Metabolism Biomarkers in a Chinese Consanguineous Twin Family with Primary Hypertrophic Osteoarthropathy.

  • Na Li‎ et al.
  • International journal of endocrinology‎
  • 2020‎

Primary hypertrophic osteoarthropathy (PHO) is a rare, autosomal, recessive genetic disease characterized by digital clubbing, periostosis, and pachydermia. The underlying cause for the pathogenesis of this disease is a defect in prostaglandin E2 (PGE2) degradation, caused by mutations in HPGD or SLCO2A1. In this study, we describe the clinical characteristics, SLCO2A1 mutations, and bone metabolic markers of a PHO pedigree from a Chinese consanguineous twin family.


GPCR kinases generate an APH1A phosphorylation barcode to regulate amyloid-β generation.

  • Nicholas K Todd‎ et al.
  • Cell reports‎
  • 2022‎

Emerging evidence suggests that G protein-coupled receptor (GPCR) kinases (GRKs) are associated with the pathophysiology of Alzheimer's disease (AD). However, GRKs have not been directly implicated in regulation of the amyloid-β (Aβ) pathogenic cascade in AD. Here, we determine that GRKs phosphorylate a non-canonical substrate, anterior pharynx-defective 1A (APH1A), an integral component of the γ-secretase complex. Significantly, we show that GRKs generate distinct phosphorylation barcodes in intracellular loop 2 (ICL2) and the C terminus of APH1A, which differentially regulate recruitment of the scaffolding protein β-arrestin 2 (βarr2) to APH1A and γ-secretase-mediated Aβ generation. Further molecular dynamics simulation studies reveal an interaction between the βarr2 finger loop domain and ICL2 and ICL3 of APH1A, similar to a GPCR-β-arrestin complex, which regulates γ-secretase activity. Collectively, these studies provide insight into the molecular and structural determinants of the APH1A-βarr2 interaction that critically regulate Aβ generation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: