2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 169 papers

Androgenic regulation of beta-defensins in the mouse epididymis.

  • Shuang-Gang Hu‎ et al.
  • Reproductive biology and endocrinology : RB&E‎
  • 2014‎

The majority of beta-defensin family members are exclusively expressed in the epididymis, and some members have been shown to play essential roles in sperm maturation and fertility in rats, mice and humans. Therefore, beta-defensins are hypothesized to be potential targets for contraception and infertility diagnosis and treatment. Clarifying the regulatory mechanisms for the expression of these genes is necessary. Androgen/androgen receptor (AR) signaling plays an important regulatory role in epididymal structure and function. However, very little is known about the androgenic regulation on the production and secretion of the epididymal beta-defensins.


Human IP10-scFv and DC-induced CTL synergistically inhibit the growth of glioma in a xenograft model.

  • Xuan Wang‎ et al.
  • Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine‎
  • 2014‎

The epidermal growth factor receptor (EGFR) mutant of EGFRvIII is highly expressed in glioma cells, and the EGFRvIII-specific dendritic cell (DC)-induced tumor antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) may hold promise in cancer immunotherapy. Interferon (IFN)-γ-inducible protein (IP)-10 (IP-10) is a potent inhibitor of angiogenesis and can recruit CXCR3(+) T cells, including CD8(+) T cells, which are important for the control of tumor growth. In this study, we assessed if the combination of IP10-EGFRvIIIscFv with DC-induced CTLs would improve the therapeutic antitumor efficacy. IP10-scFv was generated by linking the human IP-10 gene with the DNA fragment for anti-EGFRvIIIscFv with a (Gly4Ser)3 flexible linker, purified by affinity chromatography, and characterized for its anti-EGFRvIII immunoreactivity and chemotactic activity. DCs were isolated from human peripheral blood monocyte cells and pulsed with EGFRvIII-peptide, then co-cultured with autologous CD8(+) T cells. BALB/c-nu mice were inoculated with human glioma U87-EGFRvIII cells in the brain and treated intracranially with IP10-scFv and/or intravenously with DC-induced CTLs for evaluating the therapeutic effect. Treatment with both IP10-scFv and EGFRvIII peptide-pulsed, DC-induced CTL synergistically inhibited the growth of glioma and prolonged the survival of tumor-bearing mice, which was accompanied by the inhibition of tumor angiogenesis and enhancement of cytotoxicity, thereby increasing the numbers of brain-infiltrating lymphocytes (BILs) and prolonging the residence time of CTLs in the tumor.


Dysregulation and functional roles of miR-183-96-182 cluster in cancer cell proliferation, invasion and metastasis.

  • Yi Ma‎ et al.
  • Oncotarget‎
  • 2016‎

Previous studies have reported aberrant expression of the miR-183-96-182 cluster in a variety of tumors, which indicates its' diagnostic or prognostic value. However, a key characteristic of the miR-183-96-182 cluster is its varied expression levels, and pleomorphic functional roles in different tumors or under different conditions. In most tumor types, the cluster is highly expressed and promotes tumorigenesis, cancer progression and metastasis; yet tumor suppressive effects have also been reported in some tumors. In the present study, we discuss the upstream regulators and the downstream target genes of miR-183-96-182 cluster, and highlight the dysregulation and functional roles of this cluster in various tumor cells. Newer insights summarized in this review will help readers understand the different facets of the miR-183-96-182 cluster in cancer development and progression.


Discovery of Novel Lipid Profiles in PCOS: Do Insulin and Androgen Oppositely Regulate Bioactive Lipid Production?

  • Shengxian Li‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2017‎

Polycystic ovary syndrome (PCOS) is a complex syndrome showing clinical features of an endocrine/metabolic disorder, including hyperinsulinemia and hyperandrogenism. Polyunsaturated fatty acids (PUFAs) and their derivatives, both tightly linked to PCOS and obesity, play important roles in inflammation and reproduction.


Molecular evidence for the involvement of a polygalacturonase-inhibiting protein, GhPGIP1, in enhanced resistance to Verticillium and Fusarium wilts in cotton.

  • Nana Liu‎ et al.
  • Scientific reports‎
  • 2017‎

Polygalacturonase-inhibiting protein (PGIP), belonging to a group of plant defence proteins, specifically inhibits endopolygalacturonases secreted by pathogens. Herein, we showed that purified GhPGIP1 is a functional inhibitor of Verticillium dahliae and Fusarium oxysporum f. sp. vasinfectum, the two fungal pathogens causing cotton wilt. Transcription of GhPGIP1 was increased in cotton upon infection, wounding, and treatment with defence hormone and H2O2. Resistance by GhPGIP1 was examined by its virus-induced gene silencing in cotton and overexpression in Arabidopsis. GhPGIP1-silenced cotton was highly susceptible to the infections. GhPGIP1 overexpression in transgenic Arabidopsis conferred resistance to the infection, accompanied by enhanced expression of pathogenesis-related proteins (PRs), isochorismate synthase 1 (ICS1), enhanced disease susceptibility 1 (EDS1), and phytoalexin-deficient 4 (PAD4) genes. Transmission electron microscopy revealed cell wall alteration and cell disintegration in plants inoculated with polygalacturonase (PGs), implying its role in damaging the cell wall. Docking studies showed that GhPGIP1 interacted strongly with C-terminal of V. dahliae PG1 (VdPG1) beyond the active site but weakly interacted with C-terminal of F. oxysporum f. sp. vasinfectum (FovPG1). These findings will contribute towards the understanding of the roles of PGIPs and in screening potential combat proteins with novel recognition specificities against evolving pathogenic factors for countering pathogen invasion.


Molecular and Functional Characterization of a Polygalacturonase-Inhibiting Protein from Cynanchum komarovii That Confers Fungal Resistance in Arabidopsis.

  • Nana Liu‎ et al.
  • PloS one‎
  • 2016‎

Compliance with ethical standards: This study did not involve human participants and animals, and the plant of interest is not an endangered species. Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat proteins that plants produce against polygalacturonase, a key virulence agent in pathogens. In this paper, we cloned and purified CkPGIP1, a gene product from Cynanchum komarovii that effectively inhibits polygalacturonases from Botrytis cinerea and Rhizoctonia solani. We found the expression of CkPGIP1 to be induced in response to salicylic acid, wounding, and infection with B. cinerea and R. solani. In addition, transgenic overexpression in Arabidopsis enhanced resistance against B. cinerea. Furthermore, CkPGIP1 obtained from transgenic Arabidopsis inhibited the activity of B. cinerea and R. solani polygalacturonases by 62.7-66.4% and 56.5-60.2%, respectively. Docking studies indicated that the protein interacts strongly with the B1-sheet at the N-terminus of the B. cinerea polygalacturonase, and with the C-terminus of the polygalacturonase from R. solani. This study highlights the significance of CkPGIP1 in plant disease resistance, and its possible application to manage fungal pathogens.


De novo transcriptome sequencing and comprehensive analysis of the drought-responsive genes in the desert plant Cynanchum komarovii.

  • Xiaowen Ma‎ et al.
  • BMC genomics‎
  • 2015‎

Cynanchum komarovii Al Iljinski is a xerophytic plant species widely distributing in the severely adverse environment of the deserts in northwest China. At present, the detailed transcriptomic and genomic data for C. komarovii are still insufficient in public databases.


Mutant huntingtin induces iron overload via up-regulating IRP1 in Huntington's disease.

  • Li Niu‎ et al.
  • Cell & bioscience‎
  • 2018‎

Iron accumulation in basal ganglia accompanies neuronal loss in Huntington's disease (HD) patients and mouse disease models. Disruption of HD brain iron homeostasis occurs before the onset of clinical signs. Therefore, investigating the mechanism of iron accumulation is essential to understanding its role in disease pathogenesis.


A β-defensin gene of Trachinotus ovatus might be involved in the antimicrobial and antiviral immune response.

  • Yongcan Zhou‎ et al.
  • Developmental and comparative immunology‎
  • 2019‎

Defensins are a group of small cationic and cysteine-rich peptides that are important components of the innate immune system. However, studies on defensins in teleosts are very limited, particularly studies on defensin functions through in vivo assays. In this study, we cloned and identified one β-defensin (TroBD) the golden pompano, Trachinotus ovatus, and analyzed the functions of TroBD in both in vivo and in vitro assays. TroBD is composed of 63 amino acids and shares high sequence identities (27.27-98.41%) with known β-defensins of other teleosts. The protein has a signature motif of six conserved cysteine residues within the mature peptide. The expression of TroBD was most abundant in the head kidney and spleen and was significantly upregulated following infection by Vibrio harveyi and viral nervous necrosis virus (VNNV). Purified recombinant TroBD (rTroBD) inhibited the growth of V. harveyi, and its antimicrobial activity was influenced by salt concentration. TroBD was found to have a chemotactic effect on macrophages in vitro. The results of an in vivo study demonstrated that TroBD overexpression/knockdown in T. ovatus significantly reduced/increased bacterial colonization or viral copy numbers in tissues. Taken together, these results indicate that TroBD plays a significant role in both antibacterial and antiviral immunity and provide new avenues for protection against pathogen infection in the aquaculture industry.


Elucidation of degrading pattern and substrate recognition of a novel bifunctional alginate lyase from Flammeovirga sp. NJ-04 and its use for preparation alginate oligosaccharides.

  • Benwei Zhu‎ et al.
  • Biotechnology for biofuels‎
  • 2019‎

The alginate oligosaccharides have been widely used in agriculture, medicine, and food industries due to their versatile physiological functions such as antioxidant, anticoagulant, and antineoplastic activities. The bifunctional alginate lyases can degrade the alginate polysaccharide more efficiently into alginate oligosaccharides. Therefore, it is crucial to discover new bifunctional alginate lyase for alginate oligosaccharide production.


Successful in vivo hyperthermal therapy toward breast cancer by Chinese medicine shikonin-loaded thermosensitive micelle.

  • Yonghua Su‎ et al.
  • International journal of nanomedicine‎
  • 2017‎

The Chinese traditional medicine Shikonin is an ideal drug due to its multiple targets to tumor cells. But in clinics, improving its aqueous solubility and tumor accumulation is still a challenge. Herein, a copolymer with tunable poly(N-isopropylacrymaide) and polylactic acid block lengths is designed, synthesized, and characterized in nuclear magnetic resonance. The corresponding thermosensitive nanomicelle (TN) with well-defined core-shell structure is then assembled in an aqueous solution. For promoting the therapeutic index, the physical-chemistry properties of TNs including narrow size, low critical micellar concentration, high serum stability, tunable volume phase transition temperature (VPTT), high drug-loading capacity, and temperature-controlled drug release are systematically investigated and regulated through the fine self-assembly. The shikonin is then entrapped in a degradable inner core resulting in a shikonin-loaded thermosensitive nanomicelle (STN) with a VPTT of ~40°C. Compared with small-molecular shikonin, the in vitro cellular internalization and cytotoxicity of STN against breast cancer cells (Michigan Cancer Foundation-7) are obviously enhanced. In addition, the therapeutic effect is further enhanced by the programmed cell death (PCD) specifically evoked by shikonin. Interestingly, both the proliferation inhibition and PCD are synergistically promoted as T > VPTT, namely the temperature-regulated passive targeting. Consequently, as intravenous injection is administered to the BALB/c nude mice bearing breast cancer, the intratumor accumulation of STNs is significantly increased as T > VPTT, which is regulated by the in-house developed heating device. The in vivo antitumor assays against breast cancer further confirm the synergistically enhanced therapeutic efficiency. The findings of this study indicate that STN is a potential effective nanoformulation in clinical cancer therapy.


The cotton GhWIN2 gene activates the cuticle biosynthesis pathway and influences the salicylic and jasmonic acid biosynthesis pathways.

  • Xiancai Li‎ et al.
  • BMC plant biology‎
  • 2019‎

Metabolic pathways are interconnected and yet relatively independent. Genes involved in metabolic modules are required for the modules to run. Study of the relationships between genes and metabolic modules improves the understanding of metabolic pathways in plants. The WIN transcription factor activates the cuticle biosynthesis pathway and promotes cuticle biosynthesis. The relationship between the WIN transcription factor and other metabolic pathways is unknown. Our aim was to determine the relationships between the main genes involved in cuticle biosynthesis and those involved in other metabolic pathways. We did this by cloning a cotton WIN gene, GhWIN2, and studying its influence on other pathways.


miRNA-26a-5p Accelerates Healing via Downregulation of PTEN in Fracture Patients with Traumatic Brain Injury.

  • Yuan Xiong‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2019‎

Patients who sustain a traumatic brain injury (TBI) are known to have a significantly quicker fracture healing time than patients with isolated fractures, but the underlying mechanism has yet to be identified. In this study, we found that the upregulation of miRNA-26a-5p induced by TBI correlated with a decrease in phosphatase and tensin homolog (PTEN) in callus formation. In vitro, overexpressing miRNA-26a-5p inhibited PTEN expression and accelerated osteoblast differentiation, whereas silencing of miRNA-26a-5p inhibited osteoblast activity. Reduction of PTEN facilitated osteoblast differentiation via the PI3K/AKT signaling pathway. Through luciferase assays, we found evidence that PTEN is a miRNA-26a-5p target gene that negatively regulates the differentiation of osteoblasts. Moreover, the present study confirmed that preinjection of agomiR-26a-5p leads to increased bone formation. Collectively, these results indicate that miRNA-26a-5p overexpression may be a key factor governing the improved fracture healing observed in TBI patients after the downregulation of PTEN and PI3K/AKT signaling. Upregulation of miRNA-26a-5p may therefore be a promising therapeutic strategy for promoting fracture healing.


Noninvasive prenatal diagnosis of 21-Hydroxylase deficiency using target capture sequencing of maternal plasma DNA.

  • Dingyuan Ma‎ et al.
  • Scientific reports‎
  • 2017‎

Here, we aimed to validate a noninvasive method using capture sequencing for prenatal diagnosis of congenital adrenal hyperplasia due to 21-Hydroxylase deficiency (21-OHD). Noninvasive prenatal diagnosis (NIPD) of 21-OHD was based on 14 plasma samples collected from 12 families, including four plasma sample collected during the first trimester. Targeted capture sequencing was performed using genomic DNA from the parents and child trios to determine the pathogenic and wild-type alleles associated with the haplotypes. Maternal plasma DNA was also sequenced to determine the fetal inheritance of the allele using hidden Markov model-based haplotype linkage analysis. The effect of fetal DNA fraction and sequencing depth on the accuracy of NIPD was investigated. The lower limit of fetal DNA fraction was 2% and the threshold mean sequence depth was 38, suggesting potential advantage if used in early gestation. The CYP21A2 genotype of the fetus was accurately determined in all the 14 plasma samples as early as day 1 and 8 weeks of gestation. Results suggest the accuracy and feasibility of NIPD of 21-OHD using a small target capture region with a low threshold for fetal DNA fraction and sequence depth. Our method is cost-effective and suggests diagnostic applications in clinical practice.


Inhibition of Circulating miR-194-5p Reverses Osteoporosis through Wnt5a/β-Catenin-Dependent Induction of Osteogenic Differentiation.

  • Bobin Mi‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2020‎

Mesenchymal stem cells (MSCs) critically contribute to bone formation, and proper induction of osteogenic differentiation can lead to an increase in bone mass. In the present study, we reported that an increased miR-194-5p level in plasma is inversely related to the degree of bone formation in osteoporosis patients. We also noted that increased miR-194-5p in the MSCs of ovariectomized (OVX) mice and agomiR-194-5p manipulation of miR-194-5p significantly suppressed bone formation, both in aged and OVX mice. Furthermore, our in vitro study showed that overexpression of miR-194-5p suppresses osteogenic differentiation, as evidenced by the decreased bone formation marker genes and matrix mineralization. The luciferase assay indicated that Wnt family member 5a (Wnt5a) is a target gene of miR-194-5p that positively regulates osteogenic differentiation. Collectively, these data indicated that miR-194-5p inhibition may be a potential strategy for osteoporosis prevention.


Prednisone for patients with recurrent implantation failure: study protocol for a double-blind, multicenter, randomized, placebo-controlled trial.

  • Yao Lu‎ et al.
  • Trials‎
  • 2020‎

Recurrent implantation failure (RIF) brings great challenges to clinicians and causes deep frustration to patients. Previous data has suggested that prednisone may play a promising role in the establishment of pregnancy and help improve the pregnancy outcome in women with RIF. But there is insufficient evidence from randomized clinical trials that had adequate power to determine if prednisone can enhance live births as the primary outcome.


Characterization of a new endo-type alginate lyase from Vibrio sp. NJU-03.

  • Benwei Zhu‎ et al.
  • International journal of biological macromolecules‎
  • 2018‎

A gene, encoding a new alginate lyase AlgNJU-03, was cloned from marine bacteria Vibrio sp. NJU-03. The recombinant alginate lyase was characterized followed by being purified by NTA-Ni Sepharose. It exhibited the highest activity (6468.99U/mg) at pH 7.0 and 30°C. Interestingly, AlgNJU-03 possessed broader substrate specificity and high activity toward both polyM (poly β-d-mannuronate) and polyG (poly α-l-guluronate), indicating that it is a bifunctional alginate lyase. Furthermore, Km of AlgNJU-03toward polyG (4.00mM) is lower than those toward alginate (8.50mM) and polyM (10.94mM), demonstrating that the enzyme has a higher affinity to polyG. Meanwhile, the catalytic efficiency (Kcat/Km) toward polyG (11.47s-1/mM) is much higher than those toward sodium alginate (3.60s-1/mM) and polyM (0.50s-1/mM). ESI-MS analysis suggested that AlgNJU-03 mainly released disaccharides, trisaccharides and tetrasaccharides from the three kinds of substrates in an endolytic manner. Therefore, it may be a potential tool to produce alginate oligosaccharides with low DP.


Carbon ion triggered immunogenic necroptosis of nasopharyngeal carcinoma cells involving necroptotic inhibitor BCL-x.

  • Cihang Bao‎ et al.
  • Journal of Cancer‎
  • 2021‎

To explore the potential and mechanisms of necroptosis, a form of immunogenic cell death, induced by carbon ion as compared to photon beams in established photon resistant- (PR-) and sensitive nasopharyngeal carcinoma (NPC) cells. MLKL is considered a central executor of necroptosis and phosphorylation of MLKL (p-MLKL) was a critical event of necroptosis. The clonogenic survival and DNA microarray demonstrated that after repeated photon irradiation, radiosensitive NPC cells became apoptosis-resistant but could be effectively inhibited by carbon ion irradiation. The relative biologic effectiveness (RBE) at D10 and D37 were 2.15 and 2.78 for PR-NPC cells. Carbon ion induced delayed DNA damage repair, cell cycle arrest, cytogenetic damage, morphological change and cell necrosis, indicating the possibility of necroptosis in both PR- and sensitive NPC cell types. The lower expression of necroptotic inhibitors (caspase-8 and Bcl-x) and higher level of MLKL in PR-NPC cells showed it was relatively more predisposed to necroptosis compared to the sensitive cells. Subsequent experiments demonstrated the significant upregulation of p-MLKL in the PR-NPC cells treated by carbon ion (4 Gy) compared with photon irradiation at both physical (4 Gy) and RBE (10 Gy) doses (P≤0.0001). Moreover, carbon ion induced a robust (up to 28 folds) p-MLKL in the PR-NPC cells as well as sensitive cells (up to 6-fold) coupled with a lower level of BCL-x expression and increased GM-CSF implicated in resculputure of immune system. These results suggested that carbon ion could induce necroptosis of NPC cells, especially in PR-NPC cells, and its mechanisms involve BCL-x.


A Novel Molecule in Human Cyclic Endometrium: LncRNA TUNAR Is Involved in Embryo Implantation.

  • Yuan Wang‎ et al.
  • Frontiers in physiology‎
  • 2020‎

Embryo implantation rate remains an inefficient process in in vitro fertilization and embryo transfer (IVF-ET) cycles. The role long non-coding RNA (lncRNA) plays in embryo implantation remains unclear. We aimed to investigate the expression pattern of lncRNA TCL1 upstream neural differentiation-associated RNA (TUNAR) in human cyclic endometrium and clarify the role of TUNAR in the development of endometrial receptivity. Endometrial biopsies were collected at the late proliferative phase, luteinizing hormone (LH) + 2 and LH + 7, from patients with or without recurrent implantation failure (RIF). Real-time RT PCR was performed to detect the level of lncRNAs. After pZW1-snoVector-TUNAR transfection, multiple function of TUNAR in endometrial epithelial cells (EECs) and endometrial stromal cells (ESCs) was investigated. The expression of TUNAR in endometrium was found down-regulated at LH + 7 and up-regulated in RIF patients. In proliferative phase, TUNAR was overwhelmingly more abundant in ESCs and regulated its proliferation. In LH + 7, the difference in the expression of TUNAR between ESCs and EECs was narrowed. Overexpression of TUNAR not only impaired spheroid attachment to EECs, but also inhibited decidualization of ESCs. TUNAR was found expressed in human endometrium for the first time, which might be involved in embryo implantation by modulating the blastocyst attachment to the endometrial epithelium and regulating the proliferation and decidualization of ESCs. Our study helps us to better understand the molecular mechanisms of embryo implantation and may provide a promising biomarker of endometrial receptivity.


Knockdown of HSDL2 inhibits lung adenocarcinoma progression via down-regulating AKT2 expression.

  • Yujia Shi‎ et al.
  • Bioscience reports‎
  • 2020‎

The aims of the present study are to investigate the role of hydroxysteroid dehydrogenase-like 2 (HSDL2) in the progression of lung adenocarcinoma and illuminate the underlying molecular mechanisms. ShRNA targeting HSDL2 gene (siHSDL2) was utilized to knockdown (KD) HSDL2 expression. In vitro and in vivo experiments were carried out to investigate the effect of siHSDL2 on the progression of lung adenocarcinoma. Microarray hybridization and gene expression analysis were used to investigate effect of siHSDL2 on mRNA expression profile in lung cancer cell line H1299. Our data demonstrated that HSDL2 was up-regulated in lung adenocarcinoma tissue samples (P<0.001). Patients with high HSDL2 expression in cancer tissues had a worse overall survival (P<0.001). HSDL2 KD not only inhibited the proliferation, cell cycle, apoptosis, clone-formation, invasion and migration of lung adenocarcinoma cells in vitro (P<0.05), but also suppressed the growth and metastasis in vivo (P<0.05). HSDL2 KD resulted in up-regulation of 681 genes and down-regulation of 276 genes. HSDL2 KD down-regulated the protein expression and phosphorylation of protein kinase B β (AKT2) (P<0.001 and P<0.001, respectively) and protein expression of baculoviral IAP repeat-containing 3 (BIRC3; P=0.001), and up-regulated the phosphorylation of ERK (P<0.001). Rescue experiments showed that AKT2 overexpression reversed the suppression effect of siHSDL2 on cell proliferation (P<0.001), invasion (P<0.001) and migration (P<0.001) significantly. HSDL2 functions as an oncogene to promote the growth and metastasis of lung adenocarcinoma via promoting the expression of AKT2.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: