Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 45 papers

Sensory and motor physiological functions are impaired in gastric inhibitory polypeptide receptor-deficient mice.

  • Tetsuji Okawa‎ et al.
  • Journal of diabetes investigation‎
  • 2014‎

Gastric inhibitory polypeptide (GIP) is an incretin secreted from the gastrointestinal tract after an ingestion of nutrients, and stimulates an insulin secretion from the pancreatic islets. Additionally, GIP has important roles in extrapancreatic tissues: fat accumulation in adipose tissue, neuroprotective effects in the central nervous system and an inhibition of bone resorption. In the current study, we investigated the effects of GIP signaling on the peripheral nervous system (PNS).


Basin-scale seasonal changes in marine free-living bacterioplankton community in the Ofunato Bay.

  • Md Shaheed Reza‎ et al.
  • Gene‎
  • 2018‎

The Ofunato Bay in the northeastern Pacific Ocean area of Japan possesses the highest biodiversity of marine organisms in the world and has attracted much attention due to its economic and environmental importance. We report here a shotgun metagenomic analysis of the year-round variation in free-living bacterioplankton collected across the entire length of the bay. Phylogenetic differences among spring, summer, autumn and winter bacterioplankton suggested that members of Proteobacteria tended to decrease at high water temperatures and increase at low temperatures. It was revealed that Candidatus Pelagibacter varied seasonally, reaching as much as 60% of all sequences at the genus level in the surface waters during winter. This increase was more evident in the deeper waters, where they reached up to 75%. The relative abundance of Planktomarina also rose during winter and fell during summer. A significant component of the winter bacterioplankton community was Archaea (mainly represented by Nitrosopumilus), as their relative abundance was very low during spring and summer but high during winter. In contrast, Actinobacteria and Cyanobacteria appeared to be higher in abundance during high-temperature periods. It was also revealed that Bacteroidetes constituted a significant component of the summer bacterioplankton community, being the second largest bacterial phylum detected in the Ofunato Bay. Its members, notably Polaribacter and Flavobacterium, were found to be high in abundance during spring and summer, particularly in the surface waters. Principal component analysis and hierarchal clustering analyses showed that the bacterial communities in the Ofunato Bay changed seasonally, likely caused by the levels of organic matter, which would be deeply mixed with surface runoff in the winter.


Point-of-care nerve conduction device predicts the severity of diabetic polyneuropathy: A quantitative, but easy-to-use, prediction model.

  • Hideki Kamiya‎ et al.
  • Journal of diabetes investigation‎
  • 2021‎

A gold standard in the diagnosis of diabetic polyneuropathy (DPN) is a nerve conduction study. However, as a nerve conduction study requires expensive equipment and well-trained technicians, it is largely avoided when diagnosing DPN in clinical settings. Here, we validated a novel diagnostic method for DPN using a point-of-care nerve conduction device as an alternative way of diagnosis using a standard electromyography system.


GLP-1 Receptor Signaling Differentially Modifies the Outcomes of Sterile vs Viral Pulmonary Inflammation in Male Mice.

  • Takehiro Sato‎ et al.
  • Endocrinology‎
  • 2020‎

A number of disease states, including type 2 diabetes (T2D), are associated with an increased risk of pulmonary infection. Glucagon-like peptide-1 (GLP-1) receptor agonists are used to treat T2D and exert anti-inflammatory actions through a single, well-defined GLP-1 receptor (GLP-1R). Although highly expressed in the lung, little is known about the role of the GLP-1R in the context of pulmonary inflammation. Here we examined the consequences of gain or loss of GLP-1R activity in infectious and noninfectious lung inflammation. We studied wild-type mice treated with a GLP-1R agonist, and Glp1r-/- mice, in the setting of bleomycin-induced noninfectious lung injury and influenza virus infection. Loss of the GLP-1R attenuated the severity of bleomycin-induced lung injury, whereas activation of GLP-1R signaling increased pulmonary inflammation via the sympathetic nervous system. In contrast, GLP-1R agonism reduced the pathogen load in mice with experimental influenza virus infection in association with increased expression of intracellular interferon-inducible GTPases. Notably, the GLP-1 receptor agonist liraglutide improved the survival rate after influenza virus infection. Our results reveal context-dependent roles for the GLP-1 system in the response to lung injury. Notably, the therapeutic response of GLP-1R agonism in the setting of experimental influenza virus infection may have relevance for ongoing studies of GLP-1R agonism in people with T2D susceptible to viral lung injury.


Sodium-glucose cotransporter 2 inhibition attenuates protein overload in renal proximal tubule via suppression of megalin O-GlcNacylation in progressive diabetic nephropathy.

  • Hitomi Otomo‎ et al.
  • Metabolism: clinical and experimental‎
  • 2020‎

The crosstalk between sodium-glucose cotransporter 2 (SGLT2) inhibition and a membrane-associated endocytic receptor megalin function involved in renal proximal tubular protein overload in progressive diabetic nephropathy (DN) is uncertain. Here, we determined whether SGLT2 inhibition affects megalin endocytic function through suppressing its O-linked β-N-acetylglucosamine modification (O-GlcNAcylation) and protects the diabetic kidney from protein overload.


Effects of GLP-1 receptor agonist on changes in the gut bacterium and the underlying mechanisms.

  • Shunsuke Kato‎ et al.
  • Scientific reports‎
  • 2021‎

There is a close relationship between the gut microbiota and metabolic disorders. In this study, acute administration of the glucagon-like peptide-1 receptor agonist (GLP-1RA) liraglutide to mice increased the cecal levels of caseinolytic protease B, a component of Escherichia coli, and of norepinephrine. Chemical sympathectomy blocked these events. Norepinephrine was found to pass into the intestinal lumen in vitro. c-Fos staining of the intermediolateral nucleus was identified as indirect evidence of sympathetic nervous system activation of the intestinal tract by GLP-1RA. Under normal conditions, the increase in E. coli did not affect the host. However, in mice with colitis, bacterial translocation was observed with attenuation of tight junction gene expression. This is the first study to investigate the unique underlying mechanisms related the effects of GLP-1RA on changes in the gut bacterium.


Efficacy and safety of oral semaglutide in Japanese patients with type 2 diabetes: A subgroup analysis by baseline variables in the PIONEER 9 and PIONEER 10 trials.

  • Daisuke Yabe‎ et al.
  • Journal of diabetes investigation‎
  • 2022‎

To assess the impact of baseline characteristics on the efficacy and safety of oral semaglutide in Japanese patients with type 2 diabetes.


Oral Semaglutide under Human Protocols and Doses Regulates Food Intake, Body Weight, and Glycemia in Diet-Induced Obese Mice.

  • Yermek Rakhat‎ et al.
  • Nutrients‎
  • 2023‎

The first oral form of the glucagon-like peptide-1 receptor agonist, oral semaglutide, has recently been launched and potently controls glycemia and body weight in subjects with type 2 diabetes. This drug carries the absorption enhancer and requires specific protocols of administration. The mechanism of action of oral semaglutide is not fully understood, for which an appropriate experimental model is required. This study explores the metabolic effects of oral semaglutide in mice under human protocols and doses. Oral semaglutide was bolus and once daily injected into high-fat diet-induced obese (DIO) mice under human protocols, followed by monitoring blood glucose, food intake, and body weight. Oral semaglutide 0.23 mg/kg, a comparable human dose (14 mg) in a small volume of water under human protocols rapidly decreased blood glucose and food intake and continuously reduced food intake and weight gain for 3 days in DIO mice. At 0.7 mg/kg (42 mg), this drug was somewhat more potent. Oral semaglutide with human protocols and doses rapidly reduces blood glucose and food intake and continuously suppresses feeding and weight in DIO mice. This study establishes mice as a model suitable for analyzing the mechanism of anti-obesity/diabetes actions of oral semaglutide.


Protocol for a large-scale prospective observational study with alogliptin in patients with type 2 diabetes: J-BRAND Registry.

  • Nobuya Inagaki‎ et al.
  • BMJ open‎
  • 2014‎

Dipeptidyl peptidase-4 (DPP-4) inhibitors including alogliptin are categorised as a newer class of oral hypoglycaemic, antidiabetic drugs to suppress the degradation of incretin hormones ((glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP)) by DPP-4. We have scheduled a large-scale, multicentre, prospective, observational study (Japan-Based clinical ReseArch Network for Diabetes Registry: J-BRAND Registry) to construct an extensive database over a long-term clinical course in patients with type 2 diabetes receiving oral hypoglycaemic agents (OHAs) and to evaluate the safety and efficacy of alogliptin in Japanese population.


Wolfram syndrome in the Japanese population; molecular analysis of WFS1 gene and characterization of clinical features.

  • Kimie Matsunaga‎ et al.
  • PloS one‎
  • 2014‎

Wolfram syndrome (WFS) is a recessive neurologic and endocrinologic degenerative disorder, and is also known as DIDMOAD (Diabetes Insipidus, early-onset Diabetes Mellitus, progressive Optic Atrophy and Deafness) syndrome. Most affected individuals carry recessive mutations in the Wolfram syndrome 1 gene (WFS1). However, the phenotypic pleiomorphism, rarity and molecular complexity of this disease complicate our efforts to understand WFS. To address this limitation, we aimed to describe complications and to elucidate the contributions of WFS1 mutations to clinical manifestations in Japanese patients with WFS.


Glucagon-Like Peptide-1 Receptor Agonist Protects Dorsal Root Ganglion Neurons against Oxidative Insult.

  • Mohammad Sarif Mohiuddin‎ et al.
  • Journal of diabetes research‎
  • 2019‎

Diabetic polyneuropathy (DPN) is one of the most prevalent diabetic complications. We previously demonstrated that exendin-4 (Ex4), a glucagon-like peptide-1 receptor agonist (GLP-1RA), has beneficial effects in animal models of DPN. We hypothesized that GLP-1 signaling would protect neurons of the peripheral nervous system from oxidative insult in DPN. Here, the therapeutic potential of GLP-1RAs on DPN was investigated in depth using the cellular oxidative insult model applied to the dorsal root ganglion (DRG) neuronal cell line.


Secreted factors from cultured dental pulp stem cells promoted neurite outgrowth of dorsal root ganglion neurons and ameliorated neural functions in streptozotocin-induced diabetic mice.

  • Emiri Miura-Yura‎ et al.
  • Journal of diabetes investigation‎
  • 2020‎

Transplantation of stem cells promotes axonal regeneration and angiogenesis in a paracrine manner. In the present study, we examined whether the secreted factors in conditioned medium of stem cells from human exfoliated deciduous teeth (SHED-CM) had beneficial effects on diabetic polyneuropathy in mice.


Glucose-Dependent Insulinotropic Polypeptide Suppresses Peripheral Arterial Remodeling in Male Mice.

  • Yusaku Mori‎ et al.
  • Endocrinology‎
  • 2018‎

Glucose-dependent insulinotropic polypeptide (GIP) exhibits direct cardiovascular actions in addition to its well-known insulinotropic effect. However, the role of GIP in peripheral artery disease remains unclear. In this study, we evaluated the effects of GIP against peripheral arterial remodeling in mouse models. The genetic deletion of GIP receptor (GIPR) led to exaggerated neointimal hyperplasia after transluminal femoral artery wire injury. Conversely, chronic GIP infusion suppressed neointimal hyperplasia and facilitated endothelial regeneration. The beneficial effects of GIP were abrogated by inhibiting nitric oxide (NO) synthase, suggesting a possible mechanism mediated by NO. In cultured human umbilical vein endothelial cells (HUVECs), GIP elevated cytosolic calcium levels without affecting intracellular cAMP levels. Furthermore, GIP dose-dependently increased NO production, whereas this effect was abolished by inhibiting AMP-activated protein kinase (AMPK). GIP induced AMPK phosphorylation, which was abrogated by inhibiting phospholipase C and calcium-calmodulin-dependent protein kinase kinase but not by adenylate cyclase or liver kinase B1, suggesting the existence of a calcium-mediated GIPR signaling pathway. These effects of GIP were retained in severe hyperglycemic Leprdb/ Leprdb mice and in high-glucose-cultured HUVECs. Overall, we demonstrated the protective effects of GIP against peripheral arterial remodeling as well as the involvement of a calcium-mediated GIPR signaling pathway in vascular endothelial cells. Our findings imply the potential vascular benefits of multiple agonists targeting G protein-coupled receptors, including GIPR, which are under development for the treatment of type 2 diabetes.


The Incretin Effect in Female Mice With Double Deletion of GLP-1 and GIP Receptors.

  • Bo Ahrén‎ et al.
  • Journal of the Endocrine Society‎
  • 2020‎

To establish the contribution of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) for the incretin effect after oral glucose, studies were undertaken in female mice with genetic deletion of receptors for GIP and GLP-1 (double incretin receptor knockout [DIRKO] mice) and their wild-type (WT) counterparts. Insulin secretion was explored after oral glucose (doses ranging from 0 to 100 mg), after intravenous glucose (doses ranging from 0 to 0.75 g/kg), and after oral and intravenous glucose at matching circulating glucose. DIRKO mice had glucose intolerance after oral glucose challenges in association with impaired beta-cell function. Suprabasal area under the curve for C-peptide (AUCC-peptide) correlated linearly with suprabasal AUCglucose both in WT (r = 0.942, P = .017) and DIRKO mice (r = 0.972, P = .006). The slope of this regression was lower in DIRKO than in WT mice (0.012 ± 0.006 vs 0.031 ± 0.006 nmol C-peptide/mmol glucose, P = .042). In contrast, there was no difference in the insulin response to intravenous glucose between WT and DIRKO mice. Furthermore, oral and intravenous glucose administration at matching glucose levels showed that the augmentation of insulin secretion after oral glucose (the incretin effect) in WT mice (11.8 ± 2.3 nmol/L min) was entirely absent in DIRKO mice (3.3 ± 1.2 nmol/L min). We conclude that GIP and GLP-1 are required for normal glucose tolerance and beta-cell function after oral glucose in mice, that they are the sole incretin hormones after oral glucose at higher dose levels, and that they contribute by 65% to insulin secretion after oral glucose.


Seasonal changes in the communities of photosynthetic picoeukaryotes in Ofunato Bay as revealed by shotgun metagenomic sequencing.

  • Jonaira Rashid‎ et al.
  • Gene‎
  • 2018‎

Small photosynthetic eukaryotes play important roles in oceanic food webs in coastal regions. We investigated seasonal changes in the communities of photosynthetic picoeukaryotes (PPEs) of the class Mamiellophyceae, including the genera Bathycoccus, Micromonas and Ostreococcus, in Ofunato Bay, which is located in northeastern Japan and faces the Pacific Ocean. The abundances of PPEs were assessed over a period of one year in 2015 at three sampling stations, KSt. 1 (innermost bay area), KSt. 2 (middle bay area) and KSt. 3 (bay entrance area) at depths of 1 m (KSt. 1, KSt. 2 and KSt. 3), 8 m (KSt. 1) or 10 m (KSt. 2 and KSt. 3) by employing MiSeq shotgun metagenomic sequencing. The total abundances of Bathycoccus, Ostreococcus and Micromonas were in the ranges of 42-49%, 35-49% and 13-17%, respectively. Considering all assayed sampling stations and depths, seasonal changes revealed high abundances of PPEs during the winter and summer and low abundances during late winter to early spring and late summer to early autumn. Bathycoccus was most abundant in the winter, and Ostreococcus showed a high abundance during the summer. Another genus, Micromonas, was relatively low in abundance throughout the study period. Taken together with previously suggested blooming periods of phytoplankton, as revealed by chlorophyll a concentrations in Ofunato Bay during spring and autumn, these results for PPEs suggest that greater phytoplankton blooming has a negative influence on the seasonal occurrences of PPEs in the bay.


Reduction of Superoxide Dismutase 1 Delays Regeneration of Cardiotoxin-Injured Skeletal Muscle in KK/Ta-Ins2Akita Mice with Progressive Diabetic Nephropathy.

  • Yuya Takahashi‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Superoxide dismutase (SOD) is a major antioxidant enzyme for superoxide removal, and cytoplasmic SOD (SOD1) is expressed as a predominant isoform in all cells. We previously reported that renal SOD1 deficiency accelerates the progression of diabetic nephropathy (DN) via increasing renal oxidative stress. To evaluate whether the degree of SOD1 expression determines regeneration capacity and sarcopenic phenotypes of skeletal muscles under incipient and advanced DN conditions, we investigated the alterations of SOD1 expression, oxidative stress marker, inflammation, fibrosis, and regeneration capacity in cardiotoxin (CTX)-injured tibialis anterior (TA) muscles of two Akita diabetic mouse models with different susceptibility to DN, DN-resistant C57BL/6-Ins2Akita and DN-prone KK/Ta-Ins2Akita mice. Here, we report that KK/Ta-Ins2Akita mice, but not C57BL/6-Ins2Akita mice, exhibit delayed muscle regeneration after CTX injection, as demonstrated by the finding indicating significantly smaller average cross-sectional areas of regenerating TA muscle myofibers relative to KK/Ta-wild-type mice. Furthermore, we observed markedly reduced SOD1 expression in CTX-injected TA muscles of KK/Ta-Ins2Akita mice, but not C57BL/6-Ins2Akita mice, along with increased inflammatory cell infiltration, prominent fibrosis and superoxide overproduction. Our study provides the first evidence that SOD1 reduction and the following superoxide overproduction delay skeletal muscle regeneration through induction of overt inflammation and fibrosis in a mouse model of progressive DN.


Neuroretinal dysfunction revealed by a flicker electroretinogram correlated with peripheral nerve dysfunction and parameters of atherosclerosis in patients with diabetes.

  • Miyuka Kawai‎ et al.
  • Journal of diabetes investigation‎
  • 2021‎

Diabetic polyneuropathy (DPN) develops in the early stage of diabetes. However, no common diagnostic protocol has yet been established. Here, to verify that the flicker electroretinogram using a hand-held device can detect the early dysfunction of the peripheral nervous system in patients with diabetes, we investigated the correlation between the progression of DPN and neuroretinal dysfunction.


Taxon- and Growth Phase-Specific Antioxidant Production by Chlorophyte, Bacillariophyte, and Haptophyte Strains Isolated From Tropical Waters.

  • Norazira Abdu Rahman‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2020‎

Antioxidants found in microalgae play an essential role in both animals and humans, against various diseases and aging processes by protecting cells from oxidative damage. In this study, 26 indigenous tropical marine microalgae were screened. Out of the 26 screened strains, 10 were selected and were further investigated for their natural antioxidant compounds which include carotenoids, phenolics, and fatty acids collected in their exponential and stationary phases. The antioxidant capacity was also evaluated by a total of four assays, which include ABTS, DPPH, superoxide radical (O2 •-) scavenging capacity, and nitric oxide (•NO-) scavenging capacity. This study revealed that the antioxidant capacity of the microalgae varied between divisions, strains, and growth phase and was also related to the content of antioxidant compounds present in the cells. Carotenoids and phenolics were found to be the major contributors to the antioxidant capacity, followed by polyunsaturated fatty acids linoleic acid (LA), eicosapentaenoic acid (EPA), arachidonic acid (ARA), and docosahexaenoic acid (DHA) compared to other fatty acids. The antioxidant capacity of the selected bacillariophytes and haptophytes was found to be positively correlated to phenolic (R 2-value = 0.623, 0.714, and 0.786 with ABTS, DPPH, and •NO-) under exponential phase, and to carotenoid fucoxanthin and β-carotene (R2 value = 0.530, 0.581 with ABTS, and 0.710, 0.795 with O2 •-) under stationary phase. Meanwhile, antioxidant capacity of chlorophyte strains was positively correlated with lutein, β-carotene and zeaxanthin under the exponential phase (R2 value = 0.615, 0.615, 0.507 with ABTS, and R2 value = 0.794, 0.659, and 0.509 with •NO-). In the stationary phase, chlorophyte strains were positively correlated with violaxanthin (0.755 with •NO-), neoxanthin (0.623 with DPPH, 0.610 with •NO-), and lutein (0.582 with •NO-). This study showed that antioxidant capacity and related antioxidant compound production of tropical microalgae strains are growth phase-dependent. The results can be used to improve the microalgal antioxidant compound production for application in pharmaceutical, nutraceutical, food, and feed industry.


Seasonal and annual changes in the microbial communities of Ofunato Bay, Japan, based on metagenomics.

  • Atsushi Kobiyama‎ et al.
  • Scientific reports‎
  • 2021‎

Five years of datasets from 2015 to 2019 of whole genome shotgun sequencing for cells trapped on 0.2-µm filters of seawater collected monthly from Ofunato Bay, an enclosed bay in Japan, were analysed, which included the 2015 data that we had reported previously. Nucleotide sequences were determined for extracted DNA from three locations for both the upper (1 m) and deeper (8 or 10 m) depths. The biotic communities analysed at the domain level comprised bacteria, eukaryotes, archaea and viruses. The relative abundance of bacteria was over 60% in most months for the five years. The relative abundance of the SAR86 cluster was highest in the bacterial group, followed by Candidatus Pelagibacter and Planktomarina. The relative abundance of Ca. Pelagibacter showed no relationship with environmental factors, and those of SAR86 and Planktomarina showed positive correlations with salinity and dissolved oxygen, respectively. The bacterial community diversity showed seasonal changes, with high diversity around September and low diversity around January for all five years. Nonmetric multidimensional scaling analysis also revealed that the bacterial communities in the bay were grouped in a season-dependent manner and linked with environmental variables such as seawater temperature, salinity and dissolved oxygen.


Safety and efficacy of once-weekly semaglutide vs additional oral antidiabetic drugs in Japanese people with inadequately controlled type 2 diabetes: A randomized trial.

  • Kohei Kaku‎ et al.
  • Diabetes, obesity & metabolism‎
  • 2018‎

To evaluate the safety and efficacy of once-weekly subcutaneous semaglutide as monotherapy or combined with an oral antidiabetic drug (OAD) vs an additional OAD added to background therapy in Japanese people with type 2 diabetes (T2D) inadequately controlled on diet/exercise or OAD monotherapy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: