Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 42 papers

Exome sequencing identifies a novel CEACAM16 mutation associated with autosomal dominant nonsyndromic hearing loss DFNA4B in a Chinese family.

  • Honghan Wang‎ et al.
  • Journal of human genetics‎
  • 2015‎

Autosomal dominant nonsyndromic hearing loss (ADNSHL/DFNA) is a highly genetically heterogeneous disorder. Hitherto only about 30 ADNSHL-causing genes have been identified and many unknown genes remain to be discovered. In this research, genome-wide linkage analysis mapped the disease locus to a 4.3 Mb region on chromosome 19q13 in SY-026, a five-generation nonconsanguineous Chinese family affected by late-onset and progressive ADNSHL. This linkage region showed partial overlap with the previously reported DFNA4. Simultaneously, probands were analyzed using exome capture followed by next-generation sequencing. Encouragingly, a heterozygous missense mutation, c.505G>A (p.G169R) in exon 3 of the CEACAM16 gene (carcinoembryonic antigen-related cell adhesion molecule 16), was identified via this combined strategy. Sanger sequencing verified that the mutation co-segregated with hearing loss in the family and that it was not present in 200 unrelated control subjects with matched ancestry. This is the second report in the literature of a family with ADNSHL caused by CEACAM16 mutation. Immunofluorescence staining and western blots also prove CEACAM16 to be a secreted protein. Furthermore, our studies in transfected HEK293T cells show that the secretion efficacy of the mutant CEACAM16 is much lower than that of the wild type, suggesting a deleterious effect of the sequence variant.


De novo genic mutations among a Chinese autism spectrum disorder cohort.

  • Tianyun Wang‎ et al.
  • Nature communications‎
  • 2016‎

Recurrent de novo (DN) and likely gene-disruptive (LGD) mutations contribute significantly to autism spectrum disorders (ASDs) but have been primarily investigated in European cohorts. Here, we sequence 189 risk genes in 1,543 Chinese ASD probands (1,045 from trios). We report an 11-fold increase in the odds of DN LGD mutations compared with expectation under an exome-wide neutral model of mutation. In aggregate, ∼4% of ASD patients carry a DN mutation in one of just 29 autism risk genes. The most prevalent gene for recurrent DN mutations is SCN2A (1.1% of patients) followed by CHD8, DSCAM, MECP2, POGZ, WDFY3 and ASH1L. We identify novel DN LGD recurrences (GIGYF2, MYT1L, CUL3, DOCK8 and ZNF292) and DN mutations in previous ASD candidates (ARHGAP32, NCOR1, PHIP, STXBP1, CDKL5 and SHANK1). Phenotypic follow-up confirms potential subtypes and highlights how large global cohorts might be leveraged to prove the pathogenic significance of individually rare mutations.


Identification of CHIP as a novel causative gene for autosomal recessive cerebellar ataxia.

  • Yuting Shi‎ et al.
  • PloS one‎
  • 2013‎

Autosomal recessive cerebellar ataxias are a group of neurodegenerative disorders that are characterized by complex clinical and genetic heterogeneity. Although more than 20 disease-causing genes have been identified, many patients are still currently without a molecular diagnosis. In a two-generation autosomal recessive cerebellar ataxia family, we mapped a linkage to a minimal candidate region on chromosome 16p13.3 flanked by single-nucleotide polymorphism markers rs11248850 and rs1218762. By combining the defined linkage region with the whole-exome sequencing results, we identified a homozygous mutation (c.493CT) in CHIP (NM_005861) in this family. Using Sanger sequencing, we also identified two compound heterozygous mutations (c.389AT/c.441GT; c.621C>G/c.707GC) in CHIP gene in two additional kindreds. These mutations co-segregated exactly with the disease in these families and were not observed in 500 control subjects with matched ancestry. CHIP colocalized with NR2A, a subunit of the N-methyl-D-aspartate receptor, in the cerebellum, pons, medulla oblongata, hippocampus and cerebral cortex. Wild-type, but not disease-associated mutant CHIPs promoted the degradation of NR2A, which may underlie the pathogenesis of ataxia. In conclusion, using a combination of whole-exome sequencing and linkage analysis, we identified CHIP, encoding a U-box containing ubiquitin E3 ligase, as a novel causative gene for autosomal recessive cerebellar ataxia.


Identifying SYNE1 Ataxia With Novel Mutations in a Chinese Population.

  • Yun Peng‎ et al.
  • Frontiers in neurology‎
  • 2018‎

Objective: Variants in SYNE1 have been widely reported in ataxia patients in Europe, with highly variable clinical phenotype. Until now, no mutation of SYNE1 ataxia has been reported among the Chinese population. Our aim was to screen for SYNE1 ataxia patients in China and extend the clinicogenetic spectrum. Methods: Variants in SYNE1 were detected by high-throughput sequencing on a cohort of 126 unrelated index patients with unexplained autosomal recessive or sporadic ataxia. Pathogenicity assessments of SYNE1 variants were interpreted according to the ACMG guidelines. Potential pathogenic variants were confirmed by Sanger sequencing. Clinical assessments were conducted by two experienced neurologists. Results: Two Chinese families with variable ataxia syndrome were identified (accounting for 1.6%; 2/126), separately caused by the novel homozygous SYNE1 mutation (NM_033071.3: c.21568C>T, p.Arg7190Ter), and compound heterozygous SYNE1 mutation (NM_033071.3: c.18684G>A, p.Trp6228Ter; c.17944C>T, p.Arg5982Ter), characterized by motor neuron impairment, mental retardation and arthrogryposis. Conclusions: SYNE1 ataxia exists in the Chinese population, as a rare form of autosomal recessive ataxia, with a complex phenotype. Our findings expanded the ethnic, phenotypic and genetic diversity of SYNE1 ataxia.


Disruptive variants of CSDE1 associate with autism and interfere with neuronal development and synaptic transmission.

  • Hui Guo‎ et al.
  • Science advances‎
  • 2019‎

RNA binding proteins are key players in posttranscriptional regulation and have been implicated in neurodevelopmental and neuropsychiatric disorders. Here, we report a significant burden of heterozygous, likely gene-disrupting variants in CSDE1 (encoding a highly constrained RNA binding protein) among patients with autism and related neurodevelopmental disabilities. Analysis of 17 patients identifies common phenotypes including autism, intellectual disability, language and motor delay, seizures, macrocephaly, and variable ocular abnormalities. HITS-CLIP revealed that Csde1-binding targets are enriched in autism-associated gene sets, especially FMRP targets, and in neuronal development and synaptic plasticity-related pathways. Csde1 knockdown in primary mouse cortical neurons leads to an overgrowth of the neurites and abnormal dendritic spine morphology/synapse formation and impaired synaptic transmission, whereas mutant and knockdown experiments in Drosophila result in defects in synapse growth and synaptic transmission. Our study defines a new autism-related syndrome and highlights the functional role of CSDE1 in synapse development and synaptic transmission.


Pathogenic missense mutation pattern of forkhead box genes in neurodevelopmental disorders.

  • Lin Han‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2019‎

Forkhead box (FOX) proteins are a family of transcription factors. Mutations of three FOX genes, including FOXP1, FOXP2, and FOXG1, have been reported in neurodevelopmental disorders (NDDs). However, due to the lack of site-specific statistical significance, the pathogenicity of missense mutations of these genes is difficult to determine.


Functional relationships between recessive inherited genes and genes with de novo variants in autism spectrum disorder.

  • Lin Wang‎ et al.
  • Molecular autism‎
  • 2020‎

Both de novo variants and recessive inherited variants were associated with autism spectrum disorder (ASD). This study aimed to use exome data to prioritize recessive inherited genes (RIGs) with biallelically inherited variants in autosomes or X-linked inherited variants in males and investigate the functional relationships between RIGs and genes with de novo variants (DNGs).


SLC39A5 dysfunction impairs extracellular matrix synthesis in high myopia pathogenesis.

  • Shanshan Dong‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

High myopia is one of the leading causes of visual impairment worldwide with high heritability. We have previously identified the genetic contribution of SLC39A5 to nonsyndromic high myopia and demonstrated that disease-related mutations of SLC39A5 dysregulate the TGF-β pathway. In this study, the mechanisms underlying SLC39A5 involvement in the pathogenesis of high myopia are determined. We observed the morphogenesis and migration abnormalities of the SLC39A5 knockout (KO) human embryonic kidney cells (HEK293) and found a significant injury of ECM constituents. RNA-seq and qRT-PCR revealed the transcription decrease in COL1A1, COL2A1, COL4A1, FN1 and LAMA1 in the KO cells. Further, we demonstrated that TGF-β signalling, the regulator of ECM, was inhibited in SLC39A5 depletion situation, wherein the activation of receptor Smads (R-Smads) via phosphorylation was greatly blocked. SLC39A5 re-expression reversed the phenotype of TGF-β signalling and ECM synthesis in the KO cells. The fact that TGF-β signalling was zinc-regulated and that SLC39A5 was identified as a zinc transporter urged us to check the involvement of intracellular zinc in TGF-β signalling impairment. Finally, we determined that insufficient zinc chelation destabilized Smad proteins, which naturally inhibited TGF-β signalling. Overall, the SLC39A5 depletion-induced zinc deficiency destabilized Smad proteins, which inhibited the TGF-β signalling and downstream ECM synthesis, thus contributing to the pathogenesis of high myopia. This discovery provides a deep insight into myopic development.


GLRA2 gene mutations cause high myopia in humans and mice.

  • Qi Tian‎ et al.
  • Journal of medical genetics‎
  • 2023‎

High myopia (HM) is a leading cause of blindness that has a strong genetic predisposition. However, its genetic and pathogenic mechanisms remain largely unknown. Thus, this study aims to determine the genetic profile of individuals from two large Chinese families with HM and 200 patients with familial/sporadic HM. We also explored the pathogenic mechanism of HM using HEK293 cells and a mouse model.


New ZNF644 mutations identified in patients with high myopia.

  • Xinying Xiang‎ et al.
  • Molecular vision‎
  • 2014‎

Myopia, or near-sightedness, is one of the most common human visual impairments worldwide, and high myopia is one of the leading causes of blindness. In this study, we investigated the mutation spectrum of ZNF644, a causative gene for autosomal dominant high myopia, in a high-myopia cohort from a Chinese population.


Identification of RELN variation p.Thr3192Ser in a Chinese family with schizophrenia.

  • Zhifan Zhou‎ et al.
  • Scientific reports‎
  • 2016‎

Schizophrenia (SCZ) is a serious psychiatric disease with strong heritability. Its complexity is reflected by extensive genetic heterogeneity and much of the genetic liability remains unaccounted for. We applied a combined strategy involving detection of copy number variants (CNVs), whole-genome mapping, and exome sequencing to identify the genetic basis of autosomal-dominant SCZ in a Chinese family. To rule out pathogenic CNVs, we first performed Illumina single nucleotide polymorphism (SNP) array analysis on samples from two patients and one psychiatrically healthy family member, but no pathogenic CNVs were detected. In order to further narrow down the susceptible region, we conducted genome-wide linkage analysis and mapped the disease locus to chromosome 7q21.13-22.3, with a maximum multipoint logarithm of odds score of 2.144. Whole-exome sequencing was then carried out with samples from three affected individuals and one unaffected individual in the family. A missense variation c.9575 C > G (p.Thr3192Ser) was identified in RELN, which is known as a risk gene for SCZ, located on chromosome 7q22, in the pedigree. This rare variant, as a highly penetrant risk variant, co-segregated with the phenotype. Our results provide genetic evidence that RELN may be one of pathogenic gene in SCZ.


No significant association between RELN polymorphism and autism in case-control and family-based association study in Chinese Han population.

  • Yiqun He‎ et al.
  • Psychiatry research‎
  • 2011‎

The present study genotyped four SNPs (rs736707, rs2229864, rs362691, and rs2073559) of the Reelin gene (RELN) in 165 autistic trios, 67 sporadic autistic children and 283 healthy controls with Chinese Han pedigree. Both case-control analysis and transmission disequilibrium test (TDT) found no evidence of significant association. The results do not support previous positive findings and suggest that the four single-nucleotide polymorphisms (SNP) of RELN are unlikely to be associated with childhood autism in Chinese Han population.


Transcriptome-wide analysis of differentially expressed chemokine receptors, SNPs, and SSRs in the age-related macular degeneration.

  • Madhu Sudhana Saddala‎ et al.
  • Human genomics‎
  • 2019‎

Age-related macular degeneration (AMD) is the most common, progressive, and polygenic cause of irreversible visual impairment in the world. The molecular pathogenesis of the primary events of AMD is poorly understood. We have investigated a transcriptome-wide analysis of differential gene expression, single-nucleotide polymorphisms (SNPs), indels, and simple sequence repeats (SSRs) in datasets of the human peripheral retina and RPE-choroid-sclera control and AMD.


NCKAP1 Disruptive Variants Lead to a Neurodevelopmental Disorder with Core Features of Autism.

  • Hui Guo‎ et al.
  • American journal of human genetics‎
  • 2020‎

NCKAP1/NAP1 regulates neuronal cytoskeletal dynamics and is essential for neuronal differentiation in the developing brain. Deleterious variants in NCKAP1 have been identified in individuals with autism spectrum disorder (ASD) and intellectual disability; however, its clinical significance remains unclear. To determine its significance, we assemble genotype and phenotype data for 21 affected individuals from 20 unrelated families with predicted deleterious variants in NCKAP1. This includes 16 individuals with de novo (n = 8), transmitted (n = 6), or inheritance unknown (n = 2) truncating variants, two individuals with structural variants, and three with potentially disruptive de novo missense variants. We report a de novo and ultra-rare deleterious variant burden of NCKAP1 in individuals with neurodevelopmental disorders which needs further replication. ASD or autistic features, language and motor delay, and variable expression of intellectual or learning disability are common clinical features. Among inherited cases, there is evidence of deleterious variants segregating with neuropsychiatric disorders. Based on available human brain transcriptomic data, we show that NCKAP1 is broadly and highly expressed in both prenatal and postnatal periods and demostrate enriched expression in excitatory neurons and radial glias but depleted expression in inhibitory neurons. Mouse in utero electroporation experiments reveal that Nckap1 loss of function promotes neuronal migration during early cortical development. Combined, these data support a role for disruptive NCKAP1 variants in neurodevelopmental delay/autism, possibly by interfering with neuronal migration early in cortical development.


De novo mutations in folate-related genes associated with common developmental disorders.

  • Tengfei Luo‎ et al.
  • Computational and structural biotechnology journal‎
  • 2021‎

Folate deficiency is an environmental risk factor for several developmental disorders. De novo mutations (DNMs) also play important etiological roles in various developmental disorders. However, it remains unclear whether DNMs in folate-related genes (FRGs) contribute to developmental disorders. We obtained a list of 1,821 FRGs from folate metabolism pathways and the Comparative Toxicogenomics Database, along with data concerning DNMs in 15,404 cases and 3,391 controls from the Gene4Denovo database. We used a TADA-Denovo model to prioritize candidate disease-associated FRGs, and characterized these genes in terms of genic intolerance, functional networks, and expression patterns. Compared with the controls, FRGs were significantly enriched in likely damaging DNMs (ldDNMs) in patients with developmental disorders (1.54 ≤ odds ratio ≤ 3.39, P adj ≤ 0.0075). Furthermore, FRGs with ldDNMs rather than with likely non-damaging DNMs (lndDNMs) overlapped significantly among the five developmental disorders included in the datasets. The TADA-Denovo model prioritized 96 candidate disease-associated FRGs, which were intolerant to genetic variants. Their functional networks mainly involved pathways associated with chromatin modification, organ development, and signal transduction pathways. DNMT3A, KMT2B, KMT2C, and YY1 emerged as hub FRGs from the protein-protein interaction network. These candidate disease-associated FRGs are preferentially expressed in the excitatory neurones during embryonic development, and in the cortex, cerebellum, striatum, and amygdala during foetal development. Overall, these findings show that DNMs in FRGs are associated with the risk of developmental disorders. Further research on these DNMs may facilitate the discovery of developmental disorder biomarkers and therapeutic targets, enabling detailed, personalized, and precise folate treatment plan.


De novo variants in genes regulating stress granule assembly associate with neurodevelopmental disorders.

  • Xiangbin Jia‎ et al.
  • Science advances‎
  • 2022‎

Stress granules (SGs) are cytoplasmic assemblies in response to a variety of stressors. We report a new neurodevelopmental disorder (NDD) with common features of language problems, intellectual disability, and behavioral issues caused by de novo likely gene-disruptive variants in UBAP2L, which encodes an essential regulator of SG assembly. Ubap2l haploinsufficiency in mouse led to social and cognitive impairments accompanied by disrupted neurogenesis and reduced SG formation during early brain development. On the basis of data from 40,853 individuals with NDDs, we report a nominally significant excess of de novo variants within 29 genes that are not implicated in NDDs, including 3 essential genes (G3BP1, G3BP2, and UBAP2L) in the core SG interaction network. We validated that NDD-related de novo variants in newly implicated and known NDD genes, such as CAPRIN1, disrupt the interaction of the core SG network and interfere with SG formation. Together, our findings suggest the common SG pathology in NDDs.


GIGYF1 disruption associates with autism and impaired IGF-1R signaling.

  • Guodong Chen‎ et al.
  • The Journal of clinical investigation‎
  • 2022‎

Autism spectrum disorder (ASD) represents a group of neurodevelopmental phenotypes with a strong genetic component. An excess of likely gene-disruptive (LGD) mutations in GIGYF1 was implicated in ASD. Here, we report that GIGYF1 is the second-most mutated gene among known ASD high-confidence risk genes. We investigated the inheritance of 46 GIGYF1 LGD variants, including the highly recurrent mutation c.333del:p.L111Rfs*234. Inherited GIGYF1 heterozygous LGD variants were 1.8 times more common than de novo mutations. Among individuals with ASD, cognitive impairments were less likely in those with GIGYF1 LGD variants relative to those with other high-confidence gene mutations. Using a Gigyf1 conditional KO mouse model, we showed that haploinsufficiency in the developing brain led to social impairments without significant cognitive impairments. In contrast, homozygous mice showed more severe social disability as well as cognitive impairments. Gigyf1 deficiency in mice led to a reduction in the number of upper-layer cortical neurons, accompanied by a decrease in proliferation and increase in differentiation of neural progenitor cells. We showed that GIGYF1 regulated the recycling of IGF-1R to the cell surface. KO of GIGYF1 led to a decreased level of IGF-1R on the cell surface, disrupting the IGF-1R/ERK signaling pathway. In summary, our findings show that GIGYF1 is a regulator of IGF-1R recycling. Haploinsufficiency of GIGYF1 was associated with autistic behavior, likely through interference with IGF-1R/ERK signaling pathway.


Expression of expanded GGC repeats within NOTCH2NLC causes cardiac dysfunction in mouse models.

  • Yongcheng Pan‎ et al.
  • Cell & bioscience‎
  • 2023‎

Neuronal intranuclear inclusion disease (NIID) is a rare neurodegenerative disorder characterized by widespread intranuclear inclusions in the nervous system as well as multiple visceral organs. In 2019, expanded GGC repeats within the 5' untranslated region of the NOTCH2NLC gene was identified as the causative factor. NIID is a heterogeneous disorder with variable clinical manifestations including cognitive impairment, cerebellar ataxia, parkinsonism, paroxysmal symptoms, autonomic dysfunction, and muscle weakness. Although NIID primarily affects the central and peripheral nervous systems, growing evidence suggests potential cardiac abnormalities in NIID. However, the link between expanded GGC repeats within NOTCH2NLC and cardiac dysfunction remains uncertain.


Association of genetic variants of GRIN2B with autism.

  • Yongcheng Pan‎ et al.
  • Scientific reports‎
  • 2015‎

Autism (MIM 209850) is a complex neurodevelopmental disorder characterized by social communication impairments and restricted repetitive behaviors. It has a high heritability, although much remains unclear. To evaluate genetic variants of GRIN2B in autism etiology, we performed a system association study of common and rare variants of GRIN2B and autism in cohorts from a Chinese population, involving a total sample of 1,945 subjects. Meta-analysis of a triad family cohort and a case-control cohort identified significant associations of multiple common variants and autism risk (Pmin = 1.73 × 10(-4)). Significantly, the haplotype involved with the top common variants also showed significant association (P = 1.78 × 10(-6)). Sanger sequencing of 275 probands from a triad cohort identified several variants in coding regions, including four common variants and seven rare variants. Two of the common coding variants were located in the autism-related linkage disequilibrium (LD) block, and both were significantly associated with autism (P < 9 × 10(-3)) using an independent control cohort. Burden analysis and case-only analysis of rare coding variants identified by Sanger sequencing did not find this association. Our study for the first time reveals that common variants and related haplotypes of GRIN2B are associated with autism risk.


A diagnostic gene chip for hereditary spastic paraplegias.

  • Yingying Luo‎ et al.
  • Brain research bulletin‎
  • 2013‎

Hereditary spastic paraplegias (HSPs) are a group of clinically and genetically heterogeneous monogenic neurodegenerative disorders. The gene screen of hereditary spastic paraplegias patients remains time consuming and costly because of their highly heterogeneous. As we know, there are some hot spots of mutation in many genes causing HSPs. Our aim was to develop a quick method for gene screen of HSP patients. The online mutation data banks of HSPs were searched and Chinese data for point mutations were mainly considered. Then mutations were comprehensively analyzed and ninety-six more common point mutations of HSPs disease genes were chose for the 96-plex GoldenGate assay diagnostic gene chip for HSPs. After that, we used this diagnostic gene chip to detect ninety-six clinically diagnosed HSP patients. For validation purpose, six previously Sanger sequenced cases with known point mutations were redetected on this array. The scores of all the ninety-six point mutations were between 0.601 and 0.993, and the call rate of the whole gene chip was 97.7% and its consistency was 99.0%. A patient suspected with a c.316G>C substitution in SPG6 was detected by the chip, which was further confirmed by polymerase chain reaction and sequencing. The high successful performance of this GoldenGate assay makes it a useful technique for preliminary genetic screening for HSP patients and it may be used in clinic in the future.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: