Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 71 papers

Tracking features in retinal images of adaptive optics confocal scanning laser ophthalmoscope using KLT-SIFT algorithm.

  • Hao Li‎ et al.
  • Biomedical optics express‎
  • 2010‎

With the use of adaptive optics (AO), high-resolution microscopic imaging of living human retina in the single cell level has been achieved. In an adaptive optics confocal scanning laser ophthalmoscope (AOSLO) system, with a small field size (about 1 degree, 280 μm), the motion of the eye severely affects the stabilization of the real-time video images and results in significant distortions of the retina images. In this paper, Scale-Invariant Feature Transform (SIFT) is used to abstract stable point features from the retina images. Kanade-Lucas-Tomasi(KLT) algorithm is applied to track the features. With the tracked features, the image distortion in each frame is removed by the second-order polynomial transformation, and 10 successive frames are co-added to enhance the image quality. Features of special interest in an image can also be selected manually and tracked by KLT. A point on a cone is selected manually, and the cone is tracked from frame to frame.


Introgression of the crtRB1 gene into quality protein maize inbred lines using molecular markers.

  • Li Liu‎ et al.
  • Molecular breeding : new strategies in plant improvement‎
  • 2015‎

Quality protein maize (QPM; Zea mays L.) has effectively enhanced levels of the amino acids, lysine, and tryptophan, over normal maize and provided balanced dietary protein for the health and development of monogastric animals and humans. However, as in normal maize, QPM varieties are low in provitamin A (ProVA), a precursor of vitamin A, which can lead to vitamin A deficiency in humans when maize is a significant part of their diet. In this study, maize inbred Hp321-1 carrying the favorable alleles crtRB1-5'TE-2 and crtRB1-3'TE-1 that can enhance levels of ProVA, was used as donor for improving ProVA in QPM inbred lines CML161 and CML171. Functional markers for identifying the favorable alleles crtRB1-5'TE-2 and crtRB1-3'TE-1 were used in foreground selection, and simple sequence repeat markers were used in background selection for the BC1F1, BC2F1, and BC2F2 generations. The background recovery rates were 77.4 and 84.5 % for CML161 and CML171 populations, respectively, in the BC1F1 generation, and 89.9 and 92.1 % in the BC2F2 generation. With foreground and background selection, the mean ProVA concentration has been improved from 1.60 µg g-1 in the parent of CML161 to 5.25 µg g-1 in its BC2F3 offspring, from 1.80 µg g-1 in the parent of CML171 to 8.14 µg g-1 in its BC2F3 offspring while maintaining similar QPM characteristics of the recurrent parents. The success from this study offers maize breeders a procedure for increasing ProVA in QPM lines, which will greatly mitigate vitamin A deficiency and protein-energy malnutrition in developing countries.


Biochemical and structural characterization of a DNA N6-adenine methyltransferase from Helicobacter pylori.

  • Bo Ma‎ et al.
  • Oncotarget‎
  • 2016‎

DNA N6-methyladenine modification plays an important role in regulating a variety of biological functions in bacteria. However, the mechanism of sequence-specific recognition in N6-methyladenine modification remains elusive. M1.HpyAVI, a DNA N6-adenine methyltransferase from Helicobacter pylori, shows more promiscuous substrate specificity than other enzymes. Here, we present the crystal structures of cofactor-free and AdoMet-bound structures of this enzyme, which were determined at resolutions of 3.0 Å and 3.1 Å, respectively. The core structure of M1.HpyAVI resembles the canonical AdoMet-dependent MTase fold, while the putative DNA binding regions considerably differ from those of the other MTases, which may account for the substrate promiscuity of this enzyme. Site-directed mutagenesis experiments identified residues D29 and E216 as crucial amino acids for cofactor binding and the methyl transfer activity of the enzyme, while P41, located in a highly flexible loop, playing a determinant role for substrate specificity. Taken together, our data revealed the structural basis underlying DNA N6-adenine methyltransferase substrate promiscuity.


Image processing methods to elucidate spatial characteristics of retinal microglia after optic nerve transection.

  • Yudong Zhang‎ et al.
  • Scientific reports‎
  • 2016‎

Microglia are the mononuclear phagocytes with various functions in the central nervous system, and the morphologies of microglia imply the different stages and functions. In optical nerve transection model of the retina, the retrograde degeneration of retinal ganglion cells induces microglial activations to a unique morphology termed rod microglia. A few studies described the rod microglia in the cortex and retina; however, the spatial characteristic of rod microglia is not fully understood. In this study, we built a mathematical model to characterize the spatial trait of rod microglia. In addition, we developed a Matlab-based image processing pipeline that consists of log enhancement, image segmentation, mathematical morphology based cell detection, area calculation and angle analysis. This computer program provides researchers a powerful tool to quickly analyze the spatial trait of rod microglia.


An Intelligent Parkinson's Disease Diagnostic System Based on a Chaotic Bacterial Foraging Optimization Enhanced Fuzzy KNN Approach.

  • Zhennao Cai‎ et al.
  • Computational and mathematical methods in medicine‎
  • 2018‎

Parkinson's disease (PD) is a common neurodegenerative disease, which has attracted more and more attention. Many artificial intelligence methods have been used for the diagnosis of PD. In this study, an enhanced fuzzy k-nearest neighbor (FKNN) method for the early detection of PD based upon vocal measurements was developed. The proposed method, an evolutionary instance-based learning approach termed CBFO-FKNN, was developed by coupling the chaotic bacterial foraging optimization with Gauss mutation (CBFO) approach with FKNN. The integration of the CBFO technique efficiently resolved the parameter tuning issues of the FKNN. The effectiveness of the proposed CBFO-FKNN was rigorously compared to those of the PD datasets in terms of classification accuracy, sensitivity, specificity, and AUC (area under the receiver operating characteristic curve). The simulation results indicated the proposed approach outperformed the other five FKNN models based on BFO, particle swarm optimization, Genetic algorithms, fruit fly optimization, and firefly algorithm, as well as three advanced machine learning methods including support vector machine (SVM), SVM with local learning-based feature selection, and kernel extreme learning machine in a 10-fold cross-validation scheme. The method presented in this paper has a very good prospect, which will bring great convenience to the clinicians to make a better decision in the clinical diagnosis.


Genome-wide interaction target profiling reveals a novel Peblr20-eRNA activation pathway to control stem cell pluripotency.

  • Cong Wang‎ et al.
  • Theranostics‎
  • 2020‎

Background: Long non-coding RNAs (lncRNAs) constitute an important component of the regulatory apparatus that controls stem cell pluripotency. However, the specific mechanisms utilized by these lncRNAs in the control of pluripotency are not fully characterized. Methods: We utilized a RNA reverse transcription-associated trap sequencing (RAT-seq) approach to profile the mouse genome-wide interaction targets for lncRNAs that are screened by RNA-seq. Results: We identified Peblr20 (Pou5F1 enhancer binding lncRNA 20) as a novel lncRNA that is associated with stem cell reprogramming. Peblr20 was differentially transcribed in fibroblasts compared to induced pluripotent stem cells (iPSCs). Notably, we found that Peblr20 utilized a trans mechanism to interact with the regulatory elements of multiple stemness genes. Using gain- and loss-of-function experiments, we showed that knockdown of Peblr20 caused iPSCs to exit from pluripotency, while overexpression of Peblr20 activated endogenous Pou5F1 expression. We further showed that Peblr20 promoted pluripotent reprogramming. Mechanistically, we demonstrated that Peblr20 activated endogenous Pou5F1 by binding to the Pou5F1 enhancer in trans, recruiting TET2 demethylase and activating the enhancer-transcribed RNAs. Conclusions: Our data reveal a novel epigenetic mechanism by which a lncRNA controls the fate of stem cells by trans-regulating the Pou5F1 enhancer RNA pathway. We demonstrate the potential for leveraging lncRNA biology to enhance the generation of stem cells for regenerative medicine.


Comparative effectiveness of different forms of traditional Chinese medicine for treatment of post-stroke depression: Protocol for network meta-analysis of randomized controlled trials.

  • Huiling Chen‎ et al.
  • Medicine‎
  • 2019‎

Traditional Chinese medicine (TCM) therapy is effective for post-stroke depression (PSD). TCM therapy encompasses various forms of practices. However, the comparative effectiveness of these therapies is still not clear. Here, we provide a network meta-analysis protocol to compare the effects of different types of TCM therapy on PSD, using both direct and indirect evidence.


Preparation of Anti-Human Podoplanin Monoclonal Antibody and its application in Immunohistochemical Diagnosis.

  • Chengjie Xie‎ et al.
  • Scientific reports‎
  • 2018‎

Podoplanin (PDPN), a 38 kDa transmembrane sialoglycoprotein from human, is expressed in lymphatic endothelial cells but not in vascular endothelial cells, and has been considered as a specific marker of lymph. In this study, the gene encoding the extracellular part of PDPN (ePDPN) was synthesized and used to expressed fusion protein ePDPN-His and GST-ePDPN, respectively, in E.coli. The purified GST-ePDPN fusion protein was mixed with QuickAntibody-Mouse5W adjuvant to immune mice, and the antiserum titer was determined by indirect ELISA. A stable cell line named 5B3 generating anti-PDPN monoclonal antibody (mAb) was obtained by hybridoma technology. The isotype of 5B3 cell line was IgG2b, and the chromosome number was 102 ± 4. The 5B3 mAb was purified successfully from ascites fluid through Protein G column, and its affinity constant was 2.94 × 108 L/mol. Besides, excellent specificity of the 5B3 mAb was further demonstrated in ELISA, western blot and immunohistochemistry experiments, suggesting that 5B3 mAb displays similar application value to D2-40, a commercial available antibody. Hence, the current study provides conclusive guidelines for preparation of other mAbs and their applications in immunohistochemistry diagnosis.


Fms-like tyrosine kinase 3-internal tandem duplications epigenetically activates checkpoint kinase 1 in acute myeloid leukemia cells.

  • Yudong Zhang‎ et al.
  • Scientific reports‎
  • 2021‎

It is not clear how Fms-like tyrosine kinase 3-internal tandem duplications (FLT3-ITD) regulates checkpoint kinase 1 (CHK1) in acute myeloid leukemia (AML). In this study, we investigated the regulatory effect of FLT3-ITD on CHK1. Our results showed that CHK1 was highly expressed in FLT3-ITD positive AML. The overall survival rate and disease-free survival rate of AML patients with high CHK1 level were lower than those of patients with low CHK1 level. Mechanistically, FLT3-ITD recruited p300 to the CHK1 promoter and subsequently acetylated H3K27, thereby enhancing the transcription of CHK1. Interfering with the expression of CHK1 significantly inhibited the cell proliferation and induced cell apoptosis in FLT3-ITD positive MV4-11 cells. In addition, CHK1 knockdown promoted the sensitivity of MV4-11 cells to the epigenetic inhibitors JQ1 and C646. This study discovers a new therapeutic target for FLT3-ITD + AML and provided evidence for the combination of epigenetic inhibitors for AML treatment.


Exploring the genomic resources of seven domestic Bactrian camel populations in China through restriction site-associated DNA sequencing.

  • Chenmiao Liu‎ et al.
  • PloS one‎
  • 2021‎

The domestic Bactrian camel is a valuable livestock resource in arid desert areas. Therefore, it is essential to understand the roles of important genes responsible for its characteristics. We used restriction site-associated DNA sequencing (RAD-seq) to detect single nucleotide polymorphism (SNP) markers in seven domestic Bactrian camel populations. In total, 482,786 SNPs were genotyped. The pool of all remaining others were selected as the reference population, and the Nanjiang, Sunite, Alashan, Dongjiang, Beijiang, Qinghai, and Hexi camels were the target populations for selection signature analysis. We obtained 603, 494, 622, 624, 444, 588, and 762 selected genes, respectively, from members of the seven target populations. Gene Ontology classifications and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed, and the functions of these genes were further studied using Genecards to identify genes potentially related to the unique characteristics of the camel population, such as heat resistance and stress resistance. Across all populations, cellular process, single-organism process, and metabolic process were the most abundant biological process subcategories, whereas cell, cell part, and organelle were the most abundant cellular component subcategories. Binding and catalytic activity represented the main molecular functions. The selected genes in Alashan camels were mainly enriched in ubiquitin mediated proteolysis pathways, the selected genes in Beijiang camels were mainly enriched in MAPK signaling pathways, the selected genes in Dongjiang camels were mainly enriched in RNA transport pathways, the selected genes in Hexi camels were mainly enriched in endocytosis pathways, the selected genes in Nanjiang camels were mainly enriched in insulin signaling pathways, while the selected genes in Qinghai camels were mainly enriched in focal adhesion pathways; these selected genes in Sunite camels were mainly enriched in ribosome pathways. We also found that Nanjiang (HSPA4L and INTU), and Alashan camels (INO80E) harbored genes related to the environment and characteristics. These findings provide useful insights into the genes related to the unique characteristics of domestic Bactrian camels in China, and a basis for genomic resource development in this species.


Bovine natural antibody IgM inhibits the binding of human norovirus protruding domain to its HBGA receptors.

  • Qi Han‎ et al.
  • FEBS open bio‎
  • 2022‎

Human norovirus (HuNoV) is the primary viral pathogen that causes acute gastroenteritis (AGE) in humans. The protruding (P) domain of HuNoV interacts with cell surface histo-blood group antigens (HBGAs) to initiate infection. Owing to the lack of an effective in vitro culture method and a robust animal model, our understanding of HuNoVs is limited, and as a result, there are no commercial vaccines or antivirals available at present against the virus. In an attempt to develop a preventative measure, we previously identified that bovine colostrum (bCM) contains functional factors that inhibit the binding of HuNoV P domain to its HBGA receptors. In this study, a candidate functional factor in bCM was identified as immunoglobulin M (IgM) using mass spectrometry, followed by database comparison. The natural antibody IgM was further verified to be a functional protein that inhibited HuNoV P protein binding to HBGA receptors through receptor-binding inhibition experiments using bCM, commercial IgM, and fetal bovine serum. Our findings provide a foundation for future development of natural IgM into an antiviral drug, which may help to prevent and/or treat HuNoV infection.


Co-Crystal of Rosiglitazone With Berberine Ameliorates Hyperglycemia and Insulin Resistance Through the PI3K/AKT/TXNIP Pathway In Vivo and In Vitro.

  • Qichen He‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Background: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by insulin resistance and hyperglycemia. This study examined the effect and elucidated the mechanism of improvement of hyperglycemia and insulin resistance by a co-crystal of rosiglitazone with berberine (RB) in high-sugar high-fat diet (HSHFD)-induced diabetic KKAy mice. Methods: Diabetic KKAy mice were randomly divided into seven groups: KKAy model control group (DM control) treated with 3% sodium carboxymethyl cellulose; RB groups, administered daily with RB 0.7 mg/kg (RB-L), 2.11 mg/kg (RB-M), or 6.33 mg/kg (RB-H); positive control groups, administered daily with rosiglitazone 1.04 mg/kg (RSG), berberine 195 mg/kg (BBR), or combination of 1.04 mg/kg RSG and 1.08 mg/kg BBR (MIX). Test compounds were administered orally for 8 weeks. Non-diabetic C57BL/6J mice were used as normal control (NC). Blood glucose, food intake, body weight, glucose-lipid metabolism, and pathological changes in the pancreas and liver were examined. We further evaluated the mechanism of action of RB in C2C12 and HepG2 cells stimulated with high glucose and palmitate. Results: RB treatment improved glucolipid metabolism and insulin resistance in diabetic KKAy mice. RB reduced blood glucose levels, white fat index, plasma triglyceride (TG), low-density lipoprotein (LDL), gastric inhibitory peptide (GIP), and insulin levels, increased the levels of plasma glucagon-like peptide-1 (GLP-1), high-density lipoprotein (HDL), and glycogen content in the liver and muscle; and improved oral glucose tolerance test (OGTT), insulin tolerance test (ITT), and pathological changes in the pancreas and liver of KKAy mice. Moreover, RB upregulated p-PI3K and p-AKT levels and reduced TXNIP expression in KKAy mice and in HepG2 and C2C12 cells. Conclusion: These data indicate that RB ameliorates insulin resistance and metabolic disorders, and the mechanism might be through regulating the PI3K/AKT/TXNIP signaling pathway . Thus, the co-crystal drug RB may be considered as a potential antidiabetic agent for future clinical therapy.


SIRT6 deficiency causes ovarian hypoplasia by affecting Plod1-related collagen formation.

  • Liyuan Li‎ et al.
  • Aging cell‎
  • 2024‎

SIRT6 is a key member of the mammalian sirtuin family of conserved nicotinamide adenine dinucleotide (NAD+ )-dependent deacetylases. Previous studies have shown that SIRT6 can regulate metabolism, DNA damage repair and aging. Ovarian aging process usually share similar mechanisms with general aging, which is characterized by decreases in both numbers of ovarian follicles and the quality of oocytes. It is reported that the expression level of SIRT6 was significantly decreased in the ovaries of aged mice, and the level of SIRT6 was positively correlated with ovarian reserve, indicating that SIRT6 may be potential markers of ovarian aging. However, its biological roles in follicular development are still unclear. Here, we explored the effect of SIRT6 on follicular development and found that ovarian development was interrupted in SIRT6 knockout (KO) mice, leading to disruptions of puberty and the estrus cycle, significant decreases in numbers of secondary and antral follicles, and decreased collagen in the ovarian stroma. Plod1, a lysyl hydroxylase that is vital for collagen crosslinking and deposition, was decreased at both the mRNA and protein levels in SIRT6-deficient ovaries and granulosa cells (GCs). Additionally, we found abnormal estrogen levels in both SIRT6 KO mice and SIRT6 KD GCs, accompanied by decreases in the levels of the estrogen biosynthesis genes Cyp11a1, Cyp19a1, Mgarp, and increases in the levels of TNF-α and NF-κB. These results confirmed the effect of SIRT6 on follicular development and revealed a possible molecular mechanism for SIRT6 involvement in follicular development via effects on estrogen biosynthesis and collagen formation.


Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning.

  • Yudong Zhang‎ et al.
  • Frontiers in computational neuroscience‎
  • 2015‎

Early diagnosis or detection of Alzheimer's disease (AD) from the normal elder control (NC) is very important. However, the computer-aided diagnosis (CAD) was not widely used, and the classification performance did not reach the standard of practical use. We proposed a novel CAD system for MR brain images based on eigenbrains and machine learning with two goals: accurate detection of both AD subjects and AD-related brain regions.


M-TASSER: an algorithm for protein quaternary structure prediction.

  • Huiling Chen‎ et al.
  • Biophysical journal‎
  • 2008‎

In a cell, it has been estimated that each protein on average interacts with roughly 10 others, resulting in tens of thousands of proteins known or suspected to have interaction partners; of these, only a tiny fraction have solved protein structures. To partially address this problem, we have developed M-TASSER, a hierarchical method to predict protein quaternary structure from sequence that involves template identification by multimeric threading, followed by multimer model assembly and refinement. The final models are selected by structure clustering. M-TASSER has been tested on a benchmark set comprising 241 dimers having templates with weak sequence similarity and 246 without multimeric templates in the dimer library. Of the total of 207 targets predicted to interact as dimers, 165 (80%) were correctly assigned as interacting with a true positive rate of 68% and a false positive rate of 17%. The initial best template structures have an average root mean-square deviation to native of 5.3, 6.7, and 7.4 A for the monomer, interface, and dimer structures. The final model shows on average a root mean-square deviation improvement of 1.3, 1.3, and 1.5 A over the initial template structure for the monomer, interface, and dimer structures, with refinement evident for 87% of the cases. Thus, we have developed a promising approach to predict full-length quaternary structure for proteins that have weak sequence similarity to proteins of solved quaternary structure.


Population genetic analysis of the domestic Bactrian camel in China by RAD-seq.

  • Chenmiao Liu‎ et al.
  • Ecology and evolution‎
  • 2019‎

Restriction site-associated DNA sequencing (RAD-seq) is one of the most effective high-throughput sequencing technologies for SNP development and utilization and has been applied to studying the origin and evolution of various species. The domestic Bactrian camels play an important role in economic trade and cultural construction. They are precious species resources and indispensable animals in China's agricultural production. Recently, the rapid development of modern transportation and agriculture, and the deterioration of the environment have led to a sharp decline in the number of camels. Although there have been some reports on the evolution history of the domestic Bactrian camel in China, the origin, evolutionary relationship, and genetic diversity of the camels are unclear due to the limitations of sample size and sequencing technology. Therefore, 47 samples of seven domestic Bactrian camel species from four regions (Inner Mongolia, Gansu, Qinghai, and Xinjiang) were prepared for RAD-seq analysis to study the evolutionary relationship and genetic diversity. In addition, seven domestic Bactrian camel species are located in different ecological zones, forming different characteristics and having potential development value. A total of 6,487,849 SNPs were genotyped. On the one hand, the filtered SNP information was used to conduct polymorphism mapping construction, LD attenuation analysis, and nucleotide diversity analysis. The results showed that the number of SNPs in Dongjiang camel was the highest, the LD coefficient decayed the fastest, and the nucleotide diversity was the highest. It indicates that Dongjiang camel has the highest genetic diversity. On the other hand, the filtered SNPs information was used to construct the phylogenetic tree, and F ST analysis, inbreeding coefficient analysis, principal component analysis, and population structure analysis were carried out. The results showed that Nanjiang camel and Beijiang camels grouped together, and the other five Bactrian camel populations gathered into another branch. It may be because the mountains in the northern part of Xinjiang and the desert in the middle isolate the two groups from the other five groups.


Manipulation of nuclear architecture through CRISPR-mediated chromosomal looping.

  • Stefanie L Morgan‎ et al.
  • Nature communications‎
  • 2017‎

Chromatin looping is key to gene regulation, yet no broadly applicable methods to selectively modify chromatin loops have been described. We have engineered a method for chromatin loop reorganization using CRISPR-dCas9 (CLOuD9) to selectively and reversibly establish chromatin loops. We demonstrate the power of this technology to selectively modulate gene expression at targeted loci.


Oplr16 serves as a novel chromatin factor to control stem cell fate by modulating pluripotency-specific chromosomal looping and TET2-mediated DNA demethylation.

  • Lin Jia‎ et al.
  • Nucleic acids research‎
  • 2020‎

Formation of a pluripotency-specific chromatin network is a critical event in reprogramming somatic cells into pluripotent status. To characterize the regulatory components in this process, we used 'chromatin RNA in situ reverse transcription sequencing' (CRIST-seq) to profile RNA components that interact with the pluripotency master gene Oct4. Using this approach, we identified a novel nuclear lncRNA Oplr16 that was closely involved in the initiation of reprogramming. Oplr16 not only interacted with the Oct4 promoter and regulated its activity, but it was also specifically activated during reprogramming to pluripotency. Active expression of Oplr16 was required for optimal maintenance of pluripotency in embryonic stem cells. Oplr16 was also able to enhance reprogramming of fibroblasts into pluripotent cells. RNA reverse transcription-associated trap sequencing (RAT-seq) indicated that Oplr16 interacted with multiple target genes related to stem cell self-renewal. Of note, Oplr16 utilized its 3'-fragment to recruit the chromatin factor SMC1 to orchestrate pluripotency-specific intrachromosomal looping. After binding to the Oct4 promoter, Oplr16 recruited TET2 to induce DNA demethylation and activate Oct4 in fibroblasts, leading to enhanced reprogramming. These data suggest that Oplr16 may act as a pivotal chromatin factor to control stem cell fate by modulating chromatin architecture and DNA demethylation.


The functional evaluation of pituitary in patients with a surgical resection of sellar tumours.

  • Zehao Liu‎ et al.
  • Archives of medical science : AMS‎
  • 2020‎

The aim of this study was to analyse the incidences of hypopituitarism before and after surgical resection of sellar tumours and to find the factors related to the incidences.


Bisphenol F promotes the secretion of pro-inflammatory cytokines in macrophages by enhanced glycolysis through PI3K-AKT signaling pathway.

  • Wenfeng Zhang‎ et al.
  • Toxicology letters‎
  • 2021‎

Bisphenol F (BPF) is a member of endocrine disrupting chemicals (EDCs). As a substitute of bisphenol A (BPA), BPF is widely used in various consumer products, leading to an increased risk of people's exposure. However, there are few studies on the immunotoxicity and mechanism of BPF. This study aimed to investigate the effect of BPF on the secretion of pro-inflammatory cytokines by macrophages and explore its mechanism. In our study, RAW264.7 macrophages were treated with different concentrations of BPF (0, 5, 10 and 20 μM) for 24 h. The results showed that the secretion of pro-inflammatory cytokines (IL-6, TNF-α and IL-1β) and the production of lactate were increased in a dose-dependent manner. BPFalso led to the activation of the PI3K-AKT signaling pathway. After pretreatment with glycolysis inhibitor (2-DG) and exposure to BPF (20 μM), the secretion of pro-inflammatory cytokines induced by BPF was inhibited. PI3K inhibitor (LY294002) and estrogen receptor (ER) antagonist (ICI 182,780) could also inhibit the above effects induced by BPF (20 μM). In conclusion, our results suggested that BPF can enhance glycolysis through ER mediated PI3K-AKT signaling pathway, and the enhanced glycolysis further promoted the secretion of pro-inflammatory cytokines. Our research provides basic data for future studies on bisphenol exposure and immunotoxicity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: