Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 58 papers

A sensitive array-based assay for identifying multiple TMPRSS2:ERG fusion gene variants.

  • Qing Lu‎ et al.
  • Nucleic acids research‎
  • 2008‎

Studies of gene fusions in solid tumors are not as extensive as in hematological malignancies due to several technical and analytical problems associated with tumor heterogeneity. Nevertheless, there is a growing interest in the role of fusion genes in common epithelial tumors after the discovery of recurrent TMPRSS2:ETS fusions in prostate cancer. Among all of the reported fusion partners in the ETS gene family, TMPRSS2:ERG is the most prevalent one. Here, we present a simple and sensitive microarray-based assay that is able to simultaneously determine multiple fusion variants with a single RT-PCR in impure RNA specimens. The assay detected TMPRSS2:ERG fusion transcripts with a detection sensitivity of <10 cells in the presence of more than 3000 times excess normal RNA, and in primary prostate tumors having no >1% of cancer cells. The ability to detect multiple transcript variants in a single assay is critically dependent on both the primer and probe designs. The assay should facilitate clinical and basic studies for fusion gene screening in clinical specimens, as it can be readily adapted to include multiple gene loci.


Protective Role of Cross-Reactive CD8 T Cells Against Dengue Virus Infection.

  • Annie Elong Ngono‎ et al.
  • EBioMedicine‎
  • 2016‎

Infection with one of the four dengue virus serotypes (DENV1-4) presumably leads to lifelong immunity against the infecting serotype but not against heterotypic reinfection, resulting in a greater risk of developing Dengue Hemorrhagic Fever/Dengue Shock Syndrome (DHF/DSS) during secondary infection. Both antibodies and T cell responses have been implicated in DHF/DSS pathogenesis. According to the T cell-based hypothesis termed "original antigenic sin," secondary DENV infection is dominated by non-protective, cross-reactive T cells that elicit an aberrant immune response. The goal of our study was to compare the roles of serotype-specific and cross-reactive T cells in protection vs. pathogenesis during DENV infection in vivo. Specifically, we utilized IFN-α/βR-/- HLA*B0702 transgenic mice in the context of peptide vaccination with relevant human CD8 T cell epitopes. IFN-α/βR-/- HLA*B0702 transgenic mice were immunized with DENV serotype 2 (DENV2)-specific epitopes or variants found in any of the other three serotypes (DENV1, DENV3 or DENV4), followed by challenge with DENV. Although cross-reactive T cell responses were lower than responses elicited by serotype-specific T cells, immunization with either serotype-specific or variant peptide epitopes enhanced viral clearance, demonstrating that both serotype-specific and cross-reactive T cells can contribute to protection in vivo against DENV infection.


Multi-antigen avian influenza a (H7N9) virus-like particles: particulate characterizations and immunogenicity evaluation in murine and avian models.

  • Che-Ming Jack Hu‎ et al.
  • BMC biotechnology‎
  • 2017‎

Human infection with avian influenza A virus (H7N9) was first reported in China in March 2013. Since then, hundreds of cases have been confirmed showing severe symptoms with a high mortality rate. The virus was transmitted from avian species to humans and has spread to many neighboring areas, raising serious concerns over its pandemic potential. Towards containing the disease, the goal of this study is to prepare a virus-like particle (VLP) that consists of hemagglutinin (HA), neuraminidase (NA) and matrix protein 1 (M1) derived from the human isolate A/Taiwan/S02076/2013(H7N9) for potential vaccine development.


Identification of an infectious bronchitis coronavirus strain exhibiting a classical genotype but altered antigenicity, pathogenicity, and innate immunity profile.

  • Shu-Yi Lin‎ et al.
  • Scientific reports‎
  • 2016‎

Avian coronavirus infectious bronchitis virus (IBV) poses economic threat to the poultry industry worldwide. Pathogenic IBV 3575/08 was isolated from broilers vaccinated with the attenuated viral vaccine derived from a Taiwan strain 2575/98. In this study, extensive investigations were conducted on the genome sequences, antigenicity, pathogenicity, and host immune responses of several IBV strains in specific-pathogen-free chickens. Sequence analyses revealed that 3575/08 and 2575/98 shared high homology in their structural genes, but not in non-structural accessory proteins such as 3a, 3b and 5b. Despite a high degree of homology in their spike protein genes, cross neutralization test showed low cross protection between 3575/08 and 2575/98, suggesting distinct antigenicity for the two strains. Animal challenge experiments exhibited strong respiratory and renal pathogenicity for 3575/08. In addition, early and prolonged viral shedding and rapid viral dissemination were observed. Immune gene expression profiling by PCR array showed chickens infected with 3575/08 had delayed expression of a subset of early innate immune genes, whereas chickens infected with the wild-type or attenuated-type 2575/08 revealed quick gene induction and efficient virus control. In summary, this study reveals a new IBV strain, which harbors a known local genotype but displays remarkably altered antigenicity, pathogenicity and host defenses.


Inhibitory and combinatorial effect of diphyllin, a v-ATPase blocker, on influenza viruses.

  • Hui-Wen Chen‎ et al.
  • Antiviral research‎
  • 2013‎

An influenza pandemic poses a serious threat to humans and animals. Conventional treatments against influenza include two classes of pathogen-targeting antivirals: M2 ion channel blockers (such as amantadine) and neuraminidase inhibitors (such as oseltamivir). Examination of the mechanism of influenza viral infection has shown that endosomal acidification plays a major role in facilitating the fusion between viral and endosomal membranes. This pathway has led to investigations on vacuolar ATPase (v-ATPase) activity, whose role as a regulating factor on influenza virus replication has been verified in extensive genome-wide screenings. Blocking v-ATPase activity thus presents the opportunity to interfere with influenza viral infection by preventing the pH-dependent membrane fusion between endosomes and virions. This study aims to apply diphyllin, a natural compound shown to be as a novel v-ATPase inhibitor, as a potential antiviral for various influenza virus strains using cell-based assays. The results show that diphyllin alters cellular susceptibility to influenza viruses through the inhibition of endosomal acidification, thus interfering with downstream virus replication, including that of known drug-resistant strains. In addition, combinatorial treatment of the host-targeting diphyllin with pathogen-targeting therapeutics (oseltamivir and amantadine) demonstrates enhanced antiviral effects and cell protection in vitro.


A novel approach for determining cancer genomic breakpoints in the presence of normal DNA.

  • Yu-Tsueng Liu‎ et al.
  • PloS one‎
  • 2007‎

CDKN2A (encodes p16(INK4A) and p14(ARF)) deletion, which results in both Rb and p53 inactivation, is the most common chromosomal anomaly in human cancers. To precisely map the deletion breakpoints is important to understanding the molecular mechanism of genomic rearrangement and may also be useful for clinical applications. However, current methods for determining the breakpoint are either of low resolution or require the isolation of relatively pure cancer cells, which can be difficult for clinical samples that are typically contaminated with various amounts of normal host cells. To overcome this hurdle, we have developed a novel approach, designated Primer Approximation Multiplex PCR (PAMP), for enriching breakpoint sequences followed by genomic tiling array hybridization to locate the breakpoints. In a series of proof-of-concept experiments, we were able to identify cancer-derived CDKN2A genomic breakpoints when more than 99.9% of wild type genome was present in a model system. This design can be scaled up with bioinformatics support and can be applied to validate other candidate cancer-associated loci that are revealed by other more systemic but lower throughput assays.


Antiviral efficacy of nanoparticulate vacuolar ATPase inhibitors against influenza virus infection.

  • Che-Ming Jack Hu‎ et al.
  • International journal of nanomedicine‎
  • 2018‎

Influenza virus infections are a major public health concern worldwide. Conventional treatments against the disease are designed to target viral proteins. However, the emergence of viral variants carrying drug-resistant mutations can outpace the development of pathogen-targeting antivirals. Diphyllin and bafilomycin are potent vacuolar ATPase (V-ATPase) inhibitors previously shown to have broad-spectrum antiviral activity. However, their poor water solubility and potential off-target effect limit their clinical application.


Intracellular hydrogelation preserves fluid and functional cell membrane interfaces for biological interactions.

  • Jung-Chen Lin‎ et al.
  • Nature communications‎
  • 2019‎

Cell membranes are an intricate yet fragile interface that requires substrate support for stabilization. Upon cell death, disassembly of the cytoskeletal network deprives plasma membranes of mechanical support and leads to membrane rupture and disintegration. By assembling a network of synthetic hydrogel polymers inside the intracellular compartment using photo-activated crosslinking chemistry, we show that the fluid cell membrane can be preserved, resulting in intracellularly gelated cells with robust stability. Upon assessing several types of adherent and suspension cells over a range of hydrogel crosslinking densities, we validate retention of surface properties, membrane lipid fluidity, lipid order, and protein mobility on the gelated cells. Preservation of cell surface functions is further demonstrated with gelated antigen presenting cells, which engage with antigen-specific T lymphocytes and effectively promote cell expansion ex vivo and in vivo. The intracellular hydrogelation technique presents a versatile cell fixation approach adaptable for biomembrane studies and biomedical device construction.


Detection of Feline Coronavirus in Feline Effusions by Immunofluorescence Staining and Reverse Transcription Polymerase Chain Reaction.

  • Yi-Chen Luo‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2020‎

Feline coronavirus (FCoV), the pathogen for feline infectious peritonitis, is a lethal infectious agent that can cause effusions in the pleural and abdominal cavities in domestic cats. To study the epidemiology of FCoV in Taiwan, 81 FIP-suspected sick cats with effusive specimens were recruited to test for FCoV infection using immunofluorescence staining and reverse transcription-polymerase chain reaction as detection methods, and viral RNAs were recovered from the specimens to conduct genotyping and phylogenetic analysis based on the spike (S) protein gene. The results revealed that a total of 47 (47/81, 58%) of the sick cats were positive for FCoV in the effusion samples, of which 39 were successfully sequenced and comprised of 21 type I strains, 9 type II strains, and 9 co-infections. The signalment analysis of these sick cats revealed that only the sex of cats showed a significant association (odds ratio = 2.74, 95% confidence interval = 1.06-7.07, p = 0.03) with the infection of FCoV, while age and breed showed no association. FCoV-positive cats demonstrated a significantly lower albumin to globulin ratio than negative individuals (p = 0.0004). The partial S gene-based phylogenetic analysis revealed that the type I strains demonstrated genetic diversity forming several clades, while the type II strains were more conserved. This study demonstrates the latest epidemiological status of FCoV infection in the northern part of Taiwan among sick cats and presents comparisons of Taiwan and other countries.


Nanoparticulate vacuolar ATPase blocker exhibits potent host-targeted antiviral activity against feline coronavirus.

  • Che-Ming Jack Hu‎ et al.
  • Scientific reports‎
  • 2017‎

Feline infectious peritonitis (FIP), caused by a mutated feline coronavirus, is one of the most serious and fatal viral diseases in cats. The disease remains incurable, and there is no effective vaccine available. In light of the pathogenic mechanism of feline coronavirus that relies on endosomal acidification for cytoplasmic entry, a novel vacuolar ATPase blocker, diphyllin, and its nanoformulation are herein investigated for their antiviral activity against the type II feline infectious peritonitis virus (FIPV). Experimental results show that diphyllin dose-dependently inhibits endosomal acidification in fcwf-4 cells, alters the cellular susceptibility to FIPV, and inhibits the downstream virus replication. In addition, diphyllin delivered by polymeric nanoparticles consisting of poly(ethylene glycol)-block-poly(lactide-co-glycolide) (PEG-PLGA) further demonstrates an improved safety profile and enhanced inhibitory activity against FIPV. In an in vitro model of antibody-dependent enhancement of FIPV infection, diphyllin nanoparticles showed a prominent antiviral effect against the feline coronavirus. In addition, the diphyllin nanoparticles were well tolerated in mice following high-dose intravenous administration. This study highlights the therapeutic potential of diphyllin and its nanoformulation for the treatment of FIP.


A novel PCR-based point-of-care method enables rapid, sensitive and reliable diagnosis of Babesia gibsoni infection in dogs.

  • I-Li Liu‎ et al.
  • BMC veterinary research‎
  • 2019‎

Babesia gibsoni (B. gibsoni) is an intraerythrocytic protozoan parasite of dogs that causes fever and hemolytic illness. A timely diagnosis is essential for the disease management.


Quantifiable features of a tidal breathing phenotype in dogs with severe bronchomalacia diagnosed by bronchoscopy.

  • Chung-Hui Lin‎ et al.
  • The veterinary quarterly‎
  • 2023‎

Dynamic lower airway obstruction is the primary component of canine bronchomalacia, but the ventilatory function remains underinvestigated. This prospective study analyzed tidal breathing characteristics in 28 dogs, comprising 14 with severe bronchomalacia diagnosed by bronchoscopy versus 14 without respiratory disease. Spirometry was conducted in all dogs. Bronchoscopy with bronchoalveolar lavage or brush under anesthesia was performed in 14 dogs with cough and expiratory effort. Severe bronchomalacia was defined by the severity of collapse and total number of bronchi affected. Ventilatory characteristics were compared between groups. Results revealed that dogs with severe bronchomalacia had lower minute volume (218 vs 338 mL/kg, p = .039) and greater expiratory-to-inspiratory time ratio (1.55 vs 1.35, p = .01) compared to control dogs. The tidal breathing pattern of dogs with bronchomalacia was different from that of normal dogs, and the pattern differed from the concave or flat expiratory curves typical of lower airway obstruction. Compared to control dogs, dogs with severe bronchomalacia had a significantly prolonged low-flow expiratory phase (p < .001) on the flow-time plot and a more exponential shape of the expiratory curve (p < .001) on the volume-time plot. Flow-time index ExpLF/Te (>0.14) and volume-time index Vt-AUCexp (≤31%) had a high ROC-AUC (1.00, 95% confidence interval 0.88 to 1.00) in predicting severe bronchomalacia. In conclusion, the tidal breathing pattern identified here indicates abnormal and complicated ventilatory mechanics in dogs with severe bronchomalacia. The role of this pulmonary functional phenotype should be investigated for disease progression and therapeutic monitoring in canine bronchomalacia.


CXCL10/IP-10 is a biomarker and mediator for Kawasaki disease.

  • Tai-Ming Ko‎ et al.
  • Circulation research‎
  • 2015‎

Kawasaki disease (KD), an acute febrile vasculitis, is the most common cause of acquired heart disease in childhood; however, diagnosing KD can be difficult.


Identification of PTCSC3 as a Novel Locus for Large-Vessel Ischemic Stroke: A Genome-Wide Association Study.

  • Tsong-Hai Lee‎ et al.
  • Journal of the American Heart Association‎
  • 2016‎

Ischemic stroke is a major cause of death and disability in the world. A major ischemic stroke subtype, large-vessel ischemic stroke (large artery atherosclerosis; LAA), has been shown to have some genetic components in individuals of European ancestry. However, it is not clear whether the genetic predisposition to LAA stroke varies among ethnicities. We sought to identify genetic factors that contribute to LAA stroke in 2 independent samples of Han Chinese individuals.


Micro RNA differential expression profile in canine mammary gland tumor by next generation sequencing.

  • Hui-Wen Chen‎ et al.
  • Gene‎
  • 2022‎

Canine mammary gland tumors are very common and represent a potential model of human breast cancer, and microRNA (miRNAs) are promising biomarkers and therapeutic targets for these tumors. Accordingly, we aimed to identify miRNAs differentially expressed in canine mammary gland tumors using next generation sequencing (NGS), with subsequent confirmatory qPCR and target gene analyses. Mammary gland tissue was collected from healthy dogs (n=7) and dogs with suspected tumors (n=80). A subset of samples was analyzed with NGS to identify differentially expressed miRNAs with CLC Genome Workbench. Normal (n=10), tumor-adjacent (n=6), and tumor-bearing (n=76) mammary gland tissue samples were analyzed for the identified miRNAs using qPCR. An in silico analysis (TargetScan) was performed to predict the miRNAs' target genes using gene ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (DAVID). We identified four miRNAs (cfa-miR-1-3p, cfa-miR-133a-3p, cfa-miR-133b-3p, and cfa-miR-133c-3p) as down regulated in canine mammary gland tumor tissues relative to normal and tumor adjacent tissues. KEGG analysis revealed the potential target genes of cfa-miR-1-3p are related to the Rap1 signaling pathway, adherens junction, and Ras signaling pathway, and those of the miR-133 family are related to the TGF-beta signaling pathway, synaptic vesicle cycle, and sphingolipid signaling pathway. In combination, these target genes are related to the regulation of transcription and DNA binding transcription (GO analysis), and the Hippo signaling pathway, adherens junction, and endocytosis (KEGG analysis). Accordingly, we suggest these four miRNAs are promising potential biomarker candidates for canine mammary gland tumors warranting further investigation.


Tag-Free SARS-CoV-2 Receptor Binding Domain (RBD), but Not C-Terminal Tagged SARS-CoV-2 RBD, Induces a Rapid and Potent Neutralizing Antibody Response.

  • Ting-Wei Lin‎ et al.
  • Vaccines‎
  • 2022‎

Recombinant proteins are essential in the development of subunit vaccines. In the design of many recombinant proteins, polyhistidine residues are added to the N- or C-termini of target sequences to facilitate purification. However, whether the addition of tag residues influences the immunogenicity of proteins remains unknown. In this study, the tag-free SARS-CoV-2 RBD and His-tag SARS-CoV-2 RBD proteins were investigated to determine whether there were any differences in their receptor binding affinity and immunogenicity. The results showed that the tag-free RBD protein had a higher affinity for binding with hACE2 receptors than His-tag RBD proteins (EC50: 1.78 µM vs. 7.51 µM). On day 21 after primary immunization with the proteins, the serum ELISA titers of immunized mice were measured and found to be 1:1418 for those immunized with tag-free RBD and only 1:2.4 for His-tag RBD. Two weeks after the booster dose, tag-free-RBD-immunized mice demonstrated a significantly higher neutralizing titer of 1:369 compared with 1:7.9 for His-tag-RBD-immunized mice. Furthermore, neutralizing antibodies induced by tag-free RBD persisted for up to 5 months and demonstrated greater cross-neutralization of the SARS-CoV-2 Delta variant. Evidence from Western blotting showed that the serum of His-tag-RBD-immunized mice recognized irrelevant His-tag proteins. Collectively, we conclude that the addition of a polyhistidine tag on a recombinant protein, when used as a COVID-19 vaccine antigen, may significantly impair protein immunogenicity against SARS-CoV-2. Antibody responses induced were clearly more rapid and robust for the tag-free SARS-CoV-2 RBD than the His-tag SARS-CoV-2 RBD. These findings provide important information for the design of antigens used in the development of COVID-19 subunit vaccines.


Robust induction of TRMs by combinatorial nanoshells confers cross-strain sterilizing immunity against lethal influenza viruses.

  • Pin-Hung Lin‎ et al.
  • Molecular therapy. Methods & clinical development‎
  • 2021‎

Antigen-specific lung-resident memory T cells (TRMs) constitute the first line of defense that mediates rapid protection against respiratory pathogens and inspires novel vaccine designs against infectious pandemic threats, yet effective means of inducing TRMs, particularly via non-viral vectors, remain challenging. Here, we demonstrate safe and potent induction of lung-resident TRMs using a biodegradable polymeric nanoshell that co-encapsulates antigenic peptides and TLR9 agonist CpG-oligodeoxynucleotide (CpG-ODN) in a virus-mimicking structure. Through subcutaneous priming and intranasal boosting, the combinatorial nanoshell vaccine elicits prominent lung-resident CD4+ and CD8+ T cells that surprisingly show better durability than live viral infections. In particular, nanoshells containing CpG-ODN and a pair of conserved class I and II major histocompatibility complex-restricted influenza nucleoprotein-derived antigenic peptides are demonstrated to induce near-sterilizing immunity against lethal infections with influenza A viruses of different strains and subtypes in mice, resulting in rapid elimination of replicating viruses. We further examine the pulmonary transport dynamic and optimal composition of the nanoshell vaccine conducive for robust TRM induction as well as the benefit of subcutaneous priming on TRM replenishment. The study presents a practical vaccination strategy for inducing protective TRM-mediated immunity, offering a compelling platform and critical insights in the ongoing quest toward a broadly protective vaccine against universal influenza as well as other respiratory pathogens.


A novel goose-origin Tembusu virus exhibits pathogenicity in day-old chicks with evidence of direct contact transmission.

  • Min Liu‎ et al.
  • Poultry science‎
  • 2023‎

In late 2020, an outbreak of Tembusu virus (TMUV)-associated disease occurred in a 45-day-old white Roman geese flock in Taiwan. Here, we present the identification and isolation of a novel goose-origin TMUV strain designated as NTU/C225/2020. The virus was successfully isolated using minimal-pathogen-free duck embryos. Phylogenetic analysis of the polyprotein gene showed that NTU/C225/2020 clustered together with the earliest isolates from Malaysia and was most closely related to the first Taiwanese TMUV strain, TP1906. Genomic analysis revealed significant amino acid variations among TMUV isolates in NS1 and NS2A protein regions. In the present study, we characterized the NTU/C225/2020 culture in duck embryos, chicken embryos, primary duck embryonated fibroblasts, and DF-1 cells. All host systems were susceptible to NTU/C225/2020 infection, with observable lesions. In addition, animal experiments showed that the intramuscular inoculation of NTU/C225/2020 resulted in growth retardation and hyperthermia in day-old chicks. Gross lesions in the infected chicks included hepatomegaly, hyperemic thymus, and splenomegaly. Viral loads and histopathological damage were displayed in various tissues of both inoculated and naïve co-housed chicks, confirming the direct chick-to-chick contact transmission of TMUV. This is the first in vivo study of a local TMUV strain in Taiwan. Our findings provide essential information for TMUV propagation and suggest a potential risk of disease outbreak in chicken populations.


A type-specific blocking ELISA for the detection of infectious bronchitis virus antibody.

  • Hui-Wen Chen‎ et al.
  • Journal of virological methods‎
  • 2011‎

Infectious bronchitis virus (IBV) infection has been a major threat to the poultry industry worldwide. Current commercially available ELISA kits detect group-specific antibodies; however, to understand the status of field infection, a monoclonal antibody (mAb) blocking ELISA (b-ELISA) against local IBVs was developed. The selected mAb showed specificity to Taiwan IBV strains but had no cross-reactivity with the vaccine strain H120. Using the hemagglutination inhibition (HI) test as a standard, the cut-off value, sensitivity, and specificity of a b-ELISA using this mAb were evaluated in 390 field samples. The type-specificity of detection was validated using a panel of chicken hyperimmune sera. The results showed that the b-ELISA demonstrated high sensitivity (98.0%) and specificity (97.2%) of detection. The agreement between the results of the b-ELISA and the HI test was statistically significant (Kappa=0.95), and there was no significant difference between these two methods (McNemar p=0.72). The b-ELISA specifically detected Taiwan IBV serotypes but not three non-Taiwan IBV serotypes nor sera against other avian pathogens. This b-ELISA provides type-specific antibody detection of local IBV strains. It has the potential to serve as a rapid and reliable diagnostic method for IBV clinical infections in the field in Taiwan.


Influenza A penetrates host mucus by cleaving sialic acids with neuraminidase.

  • Miriam Cohen‎ et al.
  • Virology journal‎
  • 2013‎

Influenza A virus (IAV) neuraminidase (NA) cleaves sialic acids (Sias) from glycans. Inhibiting NA with oseltamivir suppresses both viral infection, and viral release from cultured human airway epithelial cells. The role of NA in viral exit is well established: it releases budding virions by cleaving Sias from glycoconjugates on infected cells and progeny virions. The role of NA in viral entry remains unclear. Host respiratory epithelia secrete a mucus layer rich in heavily sialylated glycoproteins; these could inhibit viral entry by mimicking sialylated receptors on the cell surface. It has been suggested that NA allows influenza to penetrate the mucus by cleaving these sialylated decoys, but the exact mechanism is not yet established.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: