Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 61 papers

Dual effect of exogenous nitric oxide on neuronal excitability in rat substantia gelatinosa neurons.

  • A-Reum Park‎ et al.
  • Neural plasticity‎
  • 2014‎

Nitric oxide (NO) is an important signaling molecule involved in nociceptive transmission. It can induce analgesic and hyperalgesic effects in the central nervous system. In this study, patch-clamp recording was used to investigate the effect of NO on neuronal excitability in substantia gelatinosa (SG) neurons of the spinal cord. Different concentrations of sodium nitroprusside (SNP; NO donor) induced a dual effect on the excitability of neuronal membrane: 1 mM of SNP evoked membrane hyperpolarization and an outward current, whereas 10 µM induced depolarization of the membrane and an inward current. These effects were prevented by hemoglobin and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (c-PTIO) (NO scavengers), phenyl N-tert-butylnitrone (PBN; nonspecific reactive oxygen species scavenger), and through inhibition of soluble guanylyl cyclase (sGC). Pretreatment with n-ethylmaleimide (NEM; thiol-alkylating agent) also decreased effects of both 1 mM and 10 µM SNP, suggesting that these responses were mediated by direct S-nitrosylation. Charybdotoxin (CTX) and tetraethylammonium (TEA) (large-conductance Ca(2+)-activated K(+) channel blockers) and glybenclamide (ATP-sensitive K(+) channel blocker) decreased SNP-induced hyperpolarization. La(3+) (nonspecific cation channel blocker), but not Cs(+) (hyperpolarization-activated K(+) channel blocker), blocked SNP-induced membrane depolarization. In conclusion, NO dually affects neuronal excitability in a concentration-dependent manner via modification of various K(+) channels.


Tyrosine kinase A but not phosphacan/protein tyrosine phosphatase-zeta/beta immunoreactivity and protein level changes in neurons and astrocytes in the gerbil hippocampus proper after transient forebrain ischemia.

  • In Koo Hwang‎ et al.
  • Brain research‎
  • 2005‎

In the present study, ischemia-related changes in tyrosine kinase A (trkA) and phosphacan/protein tyrosine phosphatase-zeta/beta (PTP-zeta/beta) immunoreactivities and protein contents were examined in the hippocampus proper after transient forebrain ischemia for 5 min in a gerbil model. Our investigations showed that ischemia-induced changes occurred in trkA immunoreactivity in the hippocampal CA1 region, but not in the CA2/3 region of the hippocampus proper. In the sham-operated group, trkA immunoreactivity was barely detectable. trkA immunoreactivity increased from 30 min after ischemia and peaked at 12 h. Four days after ischemic insult, trkA immunoreactivity was observed in GFAP-immunoreactive astrocytes in the strata oriens and radiatum. In addition, we found that ischemia-related changes in trkA protein content were similar to immunohistochemical changes. On the other hand, PTP-zeta/beta immunoreactivities in the hippocampus proper were unaltered by forebrain ischemia. These results suggest that chronological changes of trkA after transient forebrain ischemia may be associated with an ischemic damage compensatory mechanism in CA1 pyramidal cells.


Magnetofluorescent Nanocomposite Comprised of Carboxymethyl Dextran Coated Superparamagnetic Iron Oxide Nanoparticles and β-Diketon Coordinated Europium Complexes.

  • Daewon Han‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2019‎

Red emitting europium (III) complexes Eu(TFAAN)₃(P(Oct)₃)₃ (TFAAN = 2-(4,4,4-Trifluoroacetoacetyl)naphthalene, P(Oct)₃ = trioctylphosphine) chelated on carboxymethyl dextran coated superparamagnetic iron oxide nanoparticles (CMD-SPIONs) was synthesized and the step wise synthetic process was reported. All the excitation spectra of distinctive photoluminesces were originated from f-f transition of EuIII with a strong red emission. The emission peaks are due to the hypersensitive transition ⁵D₀→⁷F₂ at 621 nm and ⁵D₀→⁷F₁ at 597 nm, ⁵D₀→⁷F₀ at 584 nm. No significant change in PL properties due to addition of CMD-SPIONs was observed. The cytotoxic effects of different concentrations and incubation times of Eu(TFAAN)₃(P(Oct)₃)₃ chelated CMD-SPIONs were evaluated in HEK293T and HepG2 cells using the WST assay. The results imply that Eu(TFAAN)₃(P(Oct)₃)₃ chelated CMD-SPIONs are not affecting the cell viability without altering the apoptosis and necrosis in the range of 10 to 240 μg/mL concentrations.


Role of adjuvant cisplatin-based chemotherapy following radical cystectomy in locally advanced muscle-invasive bladder cancer: Systematic review and meta-analysis of randomized trials.

  • Do Kyung Kim‎ et al.
  • Investigative and clinical urology‎
  • 2019‎

We purposed to assess the effects of adjuvant chemotherapy (ACH) on survival outcomes in patients with locally advanced muscle-invasive bladder cancer (MIBC) who are treated with radical cystectomy (RC).


JPH203, a selective L-type amino acid transporter 1 inhibitor, induces mitochondria-dependent apoptosis in Saos2 human osteosarcoma cells.

  • Dae Woo Choi‎ et al.
  • The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology‎
  • 2017‎

Most normal cells express L-type amino acid transporter 2 (LAT2). However, L-type amino acid transporter 1 (LAT1) is highly expressed in many tumor cells and presumed to support their increased growth and proliferation. This study examined the effects of JPH203, a selective LAT1 inhibitor, on cell growth and its mechanism for cell death in Saos2 human osteosarcoma cells. FOB human osteoblastic cells and Saos2 cells expressed LAT1 and LAT2 together with their associating protein 4F2 heavy chain, but the expression of LAT2 in the Saos2 cells was especially weak. JPH203 and BCH, a non-selective L-type amino acid transporter inhibitor, potently inhibited L-leucine uptake in Saos2 cells. As expected, the intrinsic ability of JPH203 to inhibit L-leucine uptake was far more efficient than that of BCH in Saos2 cells. Likewise, JPH203 and BCH inhibited Saos2 cell growth with JPH203 being superior to BCH in this regard. Furthermore, JPH203 increased apoptosis rates and formed DNA ladder in Saos2 cells. Moreover, JPH203 activated the mitochondria-dependent apoptotic signaling pathway by upregulating pro-apoptotic factors, such as Bad, Bax, and Bak, and the active form of caspase-9, and downregulating anti-apoptotic factors, such as Bcl-2 and Bcl-xL. These results suggest that the inhibition of LAT1 activity via JPH203, which may act as a potential novel anti-cancer agent, leads to apoptosis mediated by the mitochondria-dependent intrinsic apoptotic signaling pathway by inducing the intracellular depletion of neutral amino acids essential for cell growth in Saos2 human osteosarcoma cells.


Cynaroside protects human periodontal ligament cells from lipopolysaccharide-induced damage and inflammation through suppression of NF-κB activation.

  • Seul Ah Lee‎ et al.
  • Archives of oral biology‎
  • 2020‎

To investigate whether cynaroside protects human periodontal ligament (hPDL) cells from lipopolysaccharide (LPS)-induced damage and inflammation and to analyze the underlying mechanism.


Comparison of Oncologic Outcomes Between Two Alternative Sequences with Abiraterone Acetate and Enzalutamide in Patients with Metastatic Castration-Resistant Prostate Cancer: A Systematic Review and Meta-Analysis.

  • Doo Yong Chung‎ et al.
  • Cancers‎
  • 2019‎

Sequential treatment of androgen receptor axis targeted agents (ARAT), abiraterone acetate (ABI) and enzalutamide (ENZA), in metastatic castration-resistant prostate cancer (mCRPC) demonstrated some positive effects, but cross-resistances between ABI and ENZA that reduce activity have been suggested. Therefore, we conducted a meta-analysis to compare oncologic outcomes between the treatment sequences of ABI-ENZA and ENZA-ABI in patients with mCRPC. The primary endpoint was a combined progression-free survival (PFS), and the secondary endpoint was overall survival (OS). A total of five trials on 553 patients were included in this study. Each of the included studies was retrospective. In two studies including both chemo-naïve and post-chemotherapy mCRPC patients, for ABI-ENZA compared with ENZA-ABI, pooled hazard ratios (HRs) for PFS and OS were 0.37 (p < 0.0001; 95% confidence intervals (CIs), 0.23-0.60) and 0.64 (p = 0.10; 95% CIs, 0.37-1.10), respectively. In three studies with chemo-naïve mCRPC patients only, for ABI-ENZA compared with ENZA-ABI, pooled HRs for PFS and OS were 0.57 (p = 0.02; 95% CIs, 0.35-0.92) and 0.86 (p = 0.39; 95% CIs, 0.61-1.21), respectively. The current meta-analysis revealed that ABI-ENZA had a significantly more favorable oncological outcome, but the level of evidence was low. Therefore, large-scale randomized trials may be needed.


Relationship between Lower Urinary Tract Symptoms and Prostatic Urethral Stiffness Using Strain Elastography: Initial Experiences.

  • Jong Kyou Kwon‎ et al.
  • Journal of clinical medicine‎
  • 2019‎

We attempted to visualize the periurethral stiffness of prostatic urethras using strain elastography in the midsagittal plane of transrectal ultrasonography (TRUS) and to evaluate periurethral stiffness patterns in relation to lower urinary tract symptoms (LUTS). A total of 250 men were enrolled. The stiffness patterns of the entire prostate and individual zones were evaluated using strain elastography during a TRUS examination. After excluding 69 men with inappropriate elastography images, subjects were divided according to periurethral stiffness into either group A (low periurethral stiffness, N = 80) or group B (high periurethral stiffness, N = 101). There were significant differences in patient age (p = 0.022), transitional zone volume (p = 0.001), transitional zone index (p = 0.33), total international prostate symptom score (IPSS) (p < 0.001), IPSS-voiding subscore (p < 0.001), IPSS-storage subscore (p < 0.001), and quality of life (QoL) score (p = 0.002) between groups A and B. After adjusting for relevant variables, significant differences in total IPSS, IPSS-voiding subscore, and QoL score were maintained. Men with high periurethral stiffness were associated with worse urinary symptoms than those with low periurethral stiffness, suggesting that periurethral stiffness might play an important role in the development of LUTS.


What is the most effective local anesthesia for transrectal ultrasonography-guided biopsy of the prostate? A systematic review and network meta-analysis of 47 randomized clinical trials.

  • Do Kyung Kim‎ et al.
  • Scientific reports‎
  • 2019‎

We aimed to compare the effectiveness of various local anesthetic methods for controlling prostate biopsy (PBx) related pain using network meta-analysis. Literature searches were performed on PubMed/Medline, Embase, and Cochrane Library up to March 2018. Forty-seven randomized controlled trials, in which the effectiveness of PBx-related pain was investigated using a visual analogue scale after various local anesthetic methods, were included. The local anesthetic methods included intraprostatic local anesthesia (IPLA), intrarectal local anesthesia (IRLA), intravenous sedation (IVS), periprostatic nerve block (PNB), pelvic plexus block (PPB), and spinal anesthesia (SPA). Eight pairwise meta-analyses and network meta-analyses with 21 comparisons were performed. All modalities, except single use of IPLA and IRLA, were more effective than placebo. Our results demonstrate that PNB + IVS (rank 1) and SPA (rank 2) were the most effective methods for pain control. The followings are in order of PPB + IRLA, PNB + IPLA, PPB, PNB + IRLA, IVS, and PNB. In conclusion, the most effective way to alleviate PBx-related pain appears to be PNB + IVS and SPA. However, a potential increase in medical cost and additional risk of morbidities should be considered. In the current outpatient setting, PPB + IRLA, PNB + IPLA, PPB, PNB + IRLA, and PNB methods are potentially more acceptable options.


Is Pelvic Plexus Block Superior to Periprostatic Nerve Block for Pain Control during Transrectal Ultrasonography-Guided Prostate Biopsy? A Double-Blind, Randomized Controlled Trial.

  • Do Kyung Kim‎ et al.
  • Journal of clinical medicine‎
  • 2019‎

We evaluated whether pelvic plexus block (PPB) is superior to periprostatic nerve block (PNB) for pain control during transrectal ultrasonography (TRUS)-guided prostate biopsy (PBx). A prospective, double-blind, randomized, controlled study was performed at a single center; 46 patients were enrolled and randomly allocated into two groups: PPB (n = 23) and PNB (n = 23). The visual analogue scale (VAS) was used; pain scores were measured four times: during local anesthesia, probe insertion, sampling procedures, and at 15 min post procedures. No significant differences were observed in VAS scores during local anesthesia (2.30 for PPB vs. 2.65 for PNB, p = 0.537) or during probe insertion (2.83 for PPB vs. 2.39 for PNB, p = 0.569). Similarly, no differences in VAS scores were detected during the sampling procedures (2.83 for PPB vs. 2.87 for PNB, p = 0.867) and at 15 min post procedures (1.39 for PPB vs. 1.26 for PNB, p = 0.631). No major complications were noted in either group. Both PPB and PNB are comparably effective and safe methods for PBx related pain relief, and PPB is not superior to PNB. Local anesthetic method could be selected based on the preference and skill of the operator.


Highly Luminescent and Anti-Photobleaching Core-Shell Structure of Mesoporous Silica and Phosphatidylcholine Modified Superparamagnetic Iron Oxide Nanoparticles.

  • Myeong Yun Kim‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2020‎

Highly fluorescent magnetic nanoparticles (Eu(TTA)3(P(Oct)3)3@mSiO2@SPION) [europium (III) chloride hexahydrate = Eu; 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione = TTA; trioctylphosphine = (P(Oct)3); mesoporous silica = mSiO2; superparamagnetic iron oxide nanoparticle = SPION] were developed as a dual-functional imaging agent. The hierarchical structure was composed of a magnetic core and mesoporous silica shell was constructed using a cationic surfactant template after coating with phosphatidylcholine of oleic acid coated SPION. Afterward, the surface and cavities of mSiO2@SPION were modified with 3-(trimethoxysilyl) propyl methacrylate (TMSPMA) as a silane coupling agent to introduce methacrylate groups. Eu(TTA)3(P(Oct)3)3 molecules are penetrated, located and bonded covalently inside of the cavities/mesopores of mSiO2, it shows extremely stable anti-photobleaching properties. The emission spectra of Eu(TTA)3(P(Oct)3)3@mSiO2@SPION indicated typical hypersensitivity transition 5D0→7F2 at 621 nm. The concentration of Eu(TTA)3(P(Oct)3)3@mSiO2@SPION was varied between 10 and 500 μL/mL to evaluate the cytotoxicity with NCI-H460 (H460) cells using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. In addition, the presence of a strong red-emitting Eu(TTA)3(P(Oct)3)3@mSiO2@SPION in the cytoplasm was observed by fluorescence microscopy. Those results that it can be a potential candidate for dual-functional contrast agent and PL nanomaterials for fabricating the diagnostic kits to amplify the low signal.


7α,25-Dihydroxycholesterol-Induced Oxiapoptophagic Chondrocyte Death via the Modulation of p53-Akt-mTOR Axis in Osteoarthritis Pathogenesis.

  • Jeong-Yeon Seo‎ et al.
  • Molecules and cells‎
  • 2023‎

This study aimed to exploring the pathophysiological mechanism of 7α,25-dihydroxycholesterol (7α,25-DHC) in osteoarthritis (OA) pathogenesis. 7α,25-DHC accelerated the proteoglycan loss in ex vivo organ-cultured articular cartilage explant. It was mediated by the decreasing extracellular matrix major components, including aggrecan and type II collagen, and the increasing expression and activation of degenerative enzymes, including matrix metalloproteinase (MMP)-3 and -13, in chondrocytes cultured with 7α,25-DHC. Furthermore, 7α,25-DHC promoted caspase dependent chondrocytes death via extrinsic and intrinsic pathways of apoptosis. Moreover, 7α,25-DHC upregulated the expression of inflammatory factors, including inducible nitric oxide synthase, cyclooxygenase-2, nitric oxide, and prostaglandin E2, via the production of reactive oxygen species via increase of oxidative stress in chondrocytes. In addition, 7α,25-DHC upregulated the expression of autophagy biomarker, including beclin-1 and microtubule-associated protein 1A/1B-light chain 3 via the modulation of p53-Akt-mTOR axis in chondrocytes. The expression of CYP7B1, caspase-3, and beclin-1 was elevated in the degenerative articular cartilage of mouse knee joint with OA. Taken together, our findings suggest that 7α,25-DHC is a pathophysiological risk factor of OA pathogenesis that is mediated a chondrocytes death via oxiapoptophagy, which is a mixed mode of apoptosis, oxidative stress, and autophagy.


Autophagy enhancement contributes to the synergistic effect of vitamin D in temozolomide-based glioblastoma chemotherapy.

  • Dong-Ho Bak‎ et al.
  • Experimental and therapeutic medicine‎
  • 2016‎

Temozolomide (TMZ), an alkylating agent, is recommended as the initial treatment for high-grade glioblastoma. TMZ is widely used, but its short half-life and the frequency of tumor resistance limit its therapeutic efficacy. In the present study, the anticancer effect of vitamin D (VD) combined with TMZ upon glioblastoma was determined, and the underlying mechanism of this effect was identified. Through cell viability, clonogenic and wound healing assays, the current study demonstrated that treatment of a C6 glioblastoma cell line with TMZ and VD resulted in significantly increased in vitro antitumor effects compared with either VD or TMZ alone. Autophagy, hypothesized to be the dominant mechanism underlying TMZ-based tumor cell death, was maximally activated in TMZ and VD co-treated C6 cells. This was demonstrated by ultrastructural observations of autophagosomes, increased size and number of microtubule-associated protein 1 light chain 3 (LC3) puncta and increased conversion of LC3-I to LC3-II. However, the extent of apoptosis was not significantly different between cells treated with TMZ and VD and those treated with TMZ alone. Addition of the autophagy inhibitor 3-methyladenine markedly inhibited the anticancer effect of TMZ and VD treatment, indicating that the chemosensitizing effect of VD in TMZ-based glioblastoma therapy is generated through enhancement of cytotoxic autophagy. TMZ and VD co-treatment also significantly inhibited tumor progression and prolonged survival duration in rat glioblastoma orthotopic xenograft models when compared with TMZ treatment alone. These in vivo results are concordant with the aforementioned in vitro results, together revealing that the combined use of TMZ and VD exerts synergistic antitumor effects on rat models of glioblastoma and may represent an effective therapeutic strategy.


Regional difference in corticotropin-releasing factor immunoreactivity in mossy fiber terminals innervating calretinin-immunoreactive unipolar brush cells in vestibulocerebellum of rolling mouse Nagoya.

  • Masahiro Ando‎ et al.
  • Brain research‎
  • 2005‎

Unipolar brush cells (UBCs), a class of interneurons in the vestibulocerebellum, play roles in amplifying excitatory inputs from vestibulocerebellar mossy fibers. This study aimed to clarify whether corticotropin-releasing factor (CRF)-positive mossy fiber innervation of calretinin (CR)-positive UBCs was altered in rolling mouse Nagoya (RMN). The distribution and the number of CR-positive UBCs in the vestibulocerebellum were not different between RMN and control mice. Double immunofluorescence revealed that some CRF-positive mossy fiber terminals were in close apposition to CR-positive UBCs. In the lobule X of vermis, such mossy fiber terminals were about 5-fold greater in number in RMN than in controls. In contrast, the number of CRF-positive mossy fiber terminals adjoining CR-positive UBCs in the flocculus was not significantly different between RMN and controls. The results suggest increased number of CRF-positive mossy fiber terminals innervating CR-positive UBCs in the lobule X but not in the flocculus of RMN. CRF may alter CR-positive UBC-mediated excitatory pathways in the lobule X of RMN and may disturb functions of the lobule X such as cerebellar adaptation for linear motion of the head.


Predictors of Uric Acid Stones: Mean Stone Density, Stone Heterogeneity Index, and Variation Coefficient of Stone Density by Single-Energy Non-Contrast Computed Tomography and Urinary pH.

  • Jong Chan Kim‎ et al.
  • Journal of clinical medicine‎
  • 2019‎

We analyzed the capacities of pertinent parameters (determined by single-energy non-contrast computed tomography [NCCT]) and urinary pH to predict uric acid stones. We reviewed the medical records of 501 patients whose stones were removed surgically or passed spontaneously between December 2014 and April 2016. Qualifying participants (n = 420) were stratified by the nature of the stone (calcium oxalate, uric acid, or infectious). Based on NCCT, we determined maximal stone length (MSL), mean stone density (MSD), and stone heterogeneity index (SHI) using Hounsfield units (HU) and calculated the variant coefficient of stone density (VCSD = SHI/MSD × 100). Urinary pH was also ascertained. Mean patient age was 55.55 ± 15.46 years. MSD (448.59 ± 173.21 HU), SHI (100.81 ± 77.37 HU), and VCSD (22.58 ± 10.55) proved to be significantly lower in uric acid versus other types of stones, as did urinary pH (5.33 ± 0.56; all p < 0.001). Receiver operating characteristic (ROC) curves depicting predictability of uric acid stones yielded area under ROC curve (AUC) values for MSD, SHI, VCSD, and urinary pH of 0.806 (95% CI: 0.761⁻0.850), 0.893 (95% CI: 0.855⁻0.931), 0.782 (95% CI: 0.726⁻0.839), and 0.797 (95% CI: 0.749⁻0.846), respectively, with corresponding cutpoints of 572.3 HU, 140.4 HU, 25.79, and 6.0. Among these four parameters, SHI was verifiably (DeLong's test) the most effective predictor of uric acid stones (all p < 0.001). Compared with MSD, VCSD, and urinary pH, SHI may better predict uric acid stones, using a cutpoint of 140.4 HU.


Decursinol from Angelica gigas Nakai enhances endometrial receptivity during implantation.

  • Seong-Eun Kim‎ et al.
  • BMC complementary medicine and therapies‎
  • 2020‎

Embryo implantation is essential for a successful pregnancy, and an elaborate synchronization between the receptive endometrium and trophoblast is required to achieve this implantation. To increase 'endometrial receptivity', the endometrium undergoes transformation processes including responses of adhesion molecules and cellular and molecular cell to cell communication. Many natural substances from traditional herbs have been studied to aid in the achievement of successful implantation. In this study, we investigated positive effects on embryonic implantation with decursinol that is a major compound extracted from Angelica gigas Nakai known to be associated with promotion of healthy pregnancy in the traditional Korean herbal medicine.


Extract of Rhus verniciflua stokes protects against renal ischemia-reperfusion injury by enhancing Nrf2-mediated induction of antioxidant enzymes.

  • Du Ri Choi‎ et al.
  • Experimental and therapeutic medicine‎
  • 2018‎

Ischemia-reperfusion injury (IRI) may cause acute kidney disease (AKD) by mediating the oxidative stress-induced apoptosis of parenchymal cells. The extract of Rhus verniciflua Stokes (RVS) is used as a traditional herbal medicine as it exhibits anti-oxidant, anti-apoptotic and anti-inflammatory properties. Therefore, the current study investigated the therapeutic effect and the underlying mechanism of RVS on IRI-induced AKD in vivo and in vitro. The current study assessed the effects of RVS on a mouse model of renal IRI and in hypoxic human renal tubular epithelial HK-2 cells. The results demonstrated that the IRI-induced elevation of blood urea nitrogen, serum creatinine and lactate dehydrogenase was significantly attenuated by the intraoral administration of RVS (20 mg/kg/day) for 14 days prior to surgery. It was demonstrated that IRI surgery induced histological damage and cellular apoptosis in renal parenchyma, which were attenuated by pretreatment with RVS. Furthermore, in HK-2 cells incubated with 300 µM CoCl2 to induce chemical hypoxia, it was demonstrated that RVS treatment significantly inhibited cell death and the production of reactive oxygen species (ROS). Furthermore, RVS treatment upregulated the levels of endogenous antioxidant enzymes, including heme oxygenase-1 and catalase, as well as their upstream regulator nuclear factor erythroid 2-related factor 2, in HK-2 cells. Taken together, these results suggested that the intraoral administration of RVS induces a therapeutic effect on IRI-induced AKD. These effects are at least partly due to the attenuation of ROS production via upregulation of the antioxidant defense system in renal tubular cells.


25-Hydroxycholesterol-Induced Oxiapoptophagy in L929 Mouse Fibroblast Cell Line.

  • Jae-Seek You‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

25-hydroxycholesterol (25-HC) is an oxysterol synthesized from cholesterol by cholesterol-25-hydroxylase during cholesterol metabolism. The aim of this study was to verify whether 25-HC induces oxiapoptophagy in fibroblasts. 25-HC not only decreased the survival of L929 cells, but also increased the number of cells with condensed chromatin and altered morphology. Fluorescence-activated cell sorting results showed that there was a dose-dependent increase in the apoptotic populations of L929 cells upon treatment with 25-HC. 25-HC-induced apoptotic cell death was mediated by the death receptor-dependent extrinsic and mitochondria-dependent intrinsic apoptosis pathway, through the cascade activation of caspases including caspase-8, -9, and -3 in L929 cells. There was an increase in the levels of reactive oxygen species and inflammatory mediators such as inducible nitric oxide synthase, cyclooxygenase-2, nitric oxide, and prostaglandin E2 in L929 cells treated with 25-HC. Moreover, 25-HC caused an increase in the expression of beclin-1 and microtubule-associated protein 1A/1B-light chain 3, an autophagy biomarker, in L929 cells. There was a significant decrease in the phosphorylation of protein kinase B (Akt) in L929 cells treated with 25-HC. Taken together, 25-HC induced oxiapoptophagy through the modulation of Akt and p53 cellular signaling pathways in L929 cells.


Sustained Exposure of Substance P Causes Tendinopathy.

  • Seo Yoon Oh‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Recently, neuromediators such as substance P (SP) have been found to be important factors in tendon homeostasis. Some studies have found SP to be the cause of inflammation and tendinopathy, whereas others have determined it to be a critical component of tendon healing. As demonstrated by these conflicting findings, the effects of SP on tendinopathy remain unclear. In this study, we hypothesized that the duration of SP exposure determines its effect on the tendons, with repetitive long-term exposure leading to the development of tendinopathy. First, we verified the changes in gene and protein expression using in vitro tenocytes with 10-day exposure to SP. SP and SP + Run groups were injected with SP in their Achilles tendon every other day for 14 days. Achilles tendons were then harvested for biomechanical testing and histological processing. Notably, tendinopathic changes with decreased tensile strength, as observed in the Positive Control, were observed in the Achilles in the SP group compared to the Negative Control. Subsequent histological analysis, including Alcian blue staining, also revealed alterations in the Achilles tendon, which were generally consistent with the findings of tendinopathy in SP and SP + Run groups. Immunohistochemical analysis revealed increased expression of SP in the SP group, similar to the Positive Control. In general, the SP + Run group showed worse tendinopathic changes. These results suggest that sustained exposure to SP may be involved in the development of tendinopathy. Future research on inhibiting SP is warranted to target SP in the treatment of tendinopathy and may be beneficial to patients with tendinopathy.


Improvement of erectile dysfunction using endothelial progenitor cells from fetal cerebral vasculature in the cavernous nerve injury of rats.

  • Jae Heon Kim‎ et al.
  • Basic and clinical andrology‎
  • 2022‎

Because of limited differentiation to endothelium from mesenchymal stem cells, it has been strongly recommended to use endothelial progenitor cells for the regeneration of the damaged endothelium of corpora cavernosa. This study was performed to investigate the immortalized human cerebral endothelial cells and their capability for repairing erectile dysfunction in a rat model of cavernous nerve injury. Circulating endothelial progenitor cells were isolated from human fetal brain vasculature at the periventricular region of telencephalic tissues. Over 95% of CD 31-positive cells were sorted and cultured for 10 days. Human cerebral endothelial progenitor cells were injected into the cavernosa of rats with cavernous nerve injury. Erectile response was then assessed. In in vivo assays, rats were divided into three groups: group 1, sham operation: group 2, bilateral cavernous nerve injury: and group 3, treatment with human cerebral endothelial cells after cavernous nerve injury.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: