Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

A 15-year analysis of molecular epidemiology of avian infectious bronchitis coronavirus in China.

  • Zongxi Han‎ et al.
  • Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases‎
  • 2011‎

A comprehensive study of the epidemiology and pathogenicity of infectious bronchitis virus (IBV) in China was carried out by molecular characterization of the S1 gene from 46 isolates obtained for this study and 174 reference strains isolated over a 15-year period. Nine types were found according to sequence analysis and phylogenetic study of the S1 gene. The co-circulation of multiple IBV types and the ongoing emergence of IBV variants are the epidemiological challenges in China. Factors contributing to the continual emergence include mutations, insertions and deletions in the S1 protein genes; recombination between local IBV strains circulating in chicken flocks in China; and recombination between local strains and vaccine strains. Vaccination-challenge analysis between circulating field strains and Mass-type H120 vaccine indicated the need to develop new vaccines from local IBV strains. These results also emphasize the importance of continued IBV surveillance in China.


FMRP Modulates Neural Differentiation through m6A-Dependent mRNA Nuclear Export.

  • Brittany M Edens‎ et al.
  • Cell reports‎
  • 2019‎

N6-methyladenosine (m6A) modification of mRNA is emerging as a vital mechanism regulating RNA function. Here, we show that fragile X mental retardation protein (FMRP) reads m6A to promote nuclear export of methylated mRNA targets during neural differentiation. Fmr1 knockout (KO) mice show delayed neural progenitor cell cycle progression and extended maintenance of proliferating neural progenitors into postnatal stages, phenocopying methyltransferase Mettl14 conditional KO (cKO) mice that have no m6A modification. RNA-seq and m6A-seq reveal that both Mettl14cKO and Fmr1KO lead to the nuclear retention of m6A-modified FMRP target mRNAs regulating neural differentiation, indicating that both m6A and FMRP are required for the nuclear export of methylated target mRNAs. FMRP preferentially binds m6A-modified RNAs to facilitate their nuclear export through CRM1. The nuclear retention defect can be mitigated by wild-type but not nuclear export-deficient FMRP, establishing a critical role for FMRP in mediating m6A-dependent mRNA nuclear export during neural differentiation.


Genetic Diversity of Bovine Pestiviruses Detected in Backyard Cattle Farms Between 2014 and 2019 in Henan Province, China.

  • Hongfei Shi‎ et al.
  • Frontiers in veterinary science‎
  • 2020‎

Bovine pestiviruses include Pestivirus A (BVDV-1), Pestivirus B (BVDV-2), and Pestivirus H, which was originally called HoBi-like pestivirus. We conducted an epidemiological investigation for pestiviruses circulating in backyard cattle farms in central China. RT-PCR assays and sequences analysis were conducted on 54 nasal swabs, 26 serum samples, and three lung samples from cattle with respiratory infections and identified 29 pestivirus strains, including 24 Pestivirus A and five Pestivirus H strains. Phylogenetic analysis based on partial 5'-UTR and Npro sequences showed that the genotypes of 24 Pestivirus A strains included Pestivirus A 1b (six isolates), Pestivirus A 1m (six isolates), Pestivirus A 1q (two isolates), Pestivirus A 1u (one isolates), and Pestivirus A 1o (nine isolates, a putative new sub-genotype). In addition, a single Pestivirus H agenotype included all five Pestivirus H strains. This study revealed extensive genetic variations within bovine pestivirus isolates derived from cattle in backyard farms in Central China, and this epidemiological information improves our understanding of the epidemics of bovine Pestiviruses, as well as will be useful in designing and evaluating diagnostic methods and developing more effective vaccines.


Hepatic Sam68 Regulates Systemic Glucose Homeostasis and Insulin Sensitivity.

  • Aijun Qiao‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Hepatic glucose production (HGP) is an important component of glucose homeostasis, and deregulated HGP, particularly through gluconeogenesis, contributes to hyperglycemia and pathology of type-2 diabetes (T2D). It has been shown that the gluconeogenic gene expression is governed primarily by the transcription factor cAMP-response element (CRE)-binding protein (CREB) and its coactivator, CREB-regulated transcriptional coactivator 2 (CRTC2). Recently, we have discovered that Sam68, an adaptor protein and Src kinase substrate, potently promotes hepatic gluconeogenesis by promoting CRTC2 stability; however, the detailed mechanisms remain unclear. Here we show that in response to glucagon, Sam68 increases CREB/CRTC2 transactivity by interacting with CRTC2 in the CREB/CRTC2 complex and occupying the CRE motif of promoters, leading to gluconeogenic gene expression and glucose production. In hepatocytes, glucagon promotes Sam68 nuclear import, whereas insulin elicits its nuclear export. Furthermore, ablation of Sam68 in hepatocytes protects mice from high-fat diet (HFD)-induced hyperglycemia and significantly increased hepatic and peripheral insulin sensitivities. Thus, hepatic Sam68 potentiates CREB/CRTC2-mediated glucose production, contributes to the pathogenesis of insulin resistance, and may serve as a therapeutic target for T2D.


Comparative analysis of four Massachusetts type infectious bronchitis coronavirus genomes reveals a novel Massachusetts type strain and evidence of natural recombination in the genome.

  • Xiaoli Liu‎ et al.
  • Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases‎
  • 2013‎

Four Massachusetts-type (Mass-type) strains of infectious bronchitis coronavirus (IBV) were compared genetically with the pathogenic M41 and H120 vaccine strains using the complete genomic sequences. The results revealed that strains ck/CH/LNM/091017 and ck/CH/LDL/101212 were closely related to the H120 vaccine, which suggests that they might represent re-isolations of vaccine strains or variants of vaccine strains that have resulted from the accumulated point mutations after several passages in chickens. In contrast, strains ck/CH/LHLJ/07VII and ck/CH/LHLJ/100902 had a close genetic relationship with the pathogenic M41 strain. In addition, molecular markers have been identified that distinguish between field and vaccine (or vaccine-like) Mass-type viruses, which may be able to differentiate between field and vaccine strains for diagnostic purposes. Phylogenetic analysis, and pairwise comparison of full-length genomes and the nine genes, identified the occurrence of recombination events in the genome of strain CK/VH/LHLJ/07VII, which suggests that this virus originated from recombination events between M41- and H120-like strains at the switch site located at the 3' end of the nucleocapsid (N) genes. To our knowledge, this is the first time that evidence for the evolution and natural recombination under field conditions between Mass-type pathogenic and vaccinal IBV strains has been documented. These findings provide insights into the emergence and evolution of the Mass-type IB coronaviruses and may help to explain the emergence of Mass-type IBV in chicken flocks all over the world.


Grazing intensity enhances spatial aggregation of dominant species in a desert steppe.

  • Shijie Lv‎ et al.
  • Ecology and evolution‎
  • 2019‎

Understanding how grazing activity drives plant community structure or the distribution of specific species in a community remains a major challenge in community ecology. The patchiness or spatial aggregation of specific species can be quantified by analyzing their relative coordinates in the community. Using variance and geostatistical analysis methods, we examined the quantitative characteristics and spatial distribution of Stipa breviflora in a desert steppe in northern China under four different grazing intensities (no grazing, NG, light grazing, LG, moderate grazing, MG, and heavy grazing, HG) at three small spatial scales (10 × 10 cm, 20 × 20 cm, 25 × 25 cm). We found that grazing significantly increased cover, density, and proportion in standing crop of S. breviflora, but decreased height. The spatial distribution of S. breviflora was strongly dependent upon the sampling unit and grazing intensity. The patchiness of S. breviflora reduced with sampling scale, and spatial distribution of S. breviflora was mainly determined by structural factors. The intact clusters of S. breviflora were more fragmented with increasing grazing intensity and offspring clusters spread out from the center of the parent plant. These findings suggest that spatial aggregation can enhance the ability of S. breviflora to tolerate grazing and that smaller isolated clusters are beneficial to the survival of this dominant species under heavy grazing.


Sam68 promotes hepatic gluconeogenesis via CRTC2.

  • Aijun Qiao‎ et al.
  • Nature communications‎
  • 2021‎

Hepatic gluconeogenesis is essential for glucose homeostasis and also a therapeutic target for type 2 diabetes, but its mechanism is incompletely understood. Here, we report that Sam68, an RNA-binding adaptor protein and Src kinase substrate, is a novel regulator of hepatic gluconeogenesis. Both global and hepatic deletions of Sam68 significantly reduce blood glucose levels and the glucagon-induced expression of gluconeogenic genes. Protein, but not mRNA, levels of CRTC2, a crucial transcriptional regulator of gluconeogenesis, are >50% lower in Sam68-deficient hepatocytes than in wild-type hepatocytes. Sam68 interacts with CRTC2 and reduces CRTC2 ubiquitination. However, truncated mutants of Sam68 that lack the C- (Sam68ΔC) or N-terminal (Sam68ΔN) domains fails to bind CRTC2 or to stabilize CRTC2 protein, respectively, and transgenic Sam68ΔN mice recapitulate the blood-glucose and gluconeogenesis profile of Sam68-deficient mice. Hepatic Sam68 expression is also upregulated in patients with diabetes and in two diabetic mouse models, while hepatocyte-specific Sam68 deficiencies alleviate diabetic hyperglycemia and improves insulin sensitivity in mice. Thus, our results identify a role for Sam68 in hepatic gluconeogenesis, and Sam68 may represent a therapeutic target for diabetes.


Sox6 expression distinguishes dorsally and ventrally biased dopamine neurons in the substantia nigra with distinctive properties and embryonic origins.

  • Milagros Pereira Luppi‎ et al.
  • Cell reports‎
  • 2021‎

Dopamine (DA) neurons in the ventral tier of the substantia nigra pars compacta (SNc) degenerate prominently in Parkinson's disease, while those in the dorsal tier are relatively spared. Defining the molecular, functional, and developmental characteristics of each SNc tier is crucial to understand their distinct susceptibility. We demonstrate that Sox6 expression distinguishes ventrally and dorsally biased DA neuron populations in the SNc. The Sox6+ population in the ventral SNc includes an Aldh1a1+ subset and is enriched in gene pathways that underpin vulnerability. Sox6+ neurons project to the dorsal striatum and show activity correlated with acceleration. Sox6- neurons project to the medial, ventral, and caudal striatum and respond to rewards. Moreover, we show that this adult division is encoded early in development. Overall, our work demonstrates a dual origin of the SNc that results in DA neuron cohorts with distinct molecular profiles, projections, and functions.


Defective Expression of Mitochondrial, Vacuolar H+-ATPase and Histone Genes in a C. elegans Model of SMA.

  • Xiaoyang Gao‎ et al.
  • Frontiers in genetics‎
  • 2019‎

Spinal muscular atrophy (SMA) is a severe motor neuron degenerative disease caused by loss-of-function mutations in the survival motor neuron gene SMN1. It is widely posited that defective gene expression underlies SMA. However, the identities of these affected genes remain to be elucidated. By analyzing the transcriptome of a Caenorhabditis elegans SMA model at the pre-symptomatic stage, we found that the expression of numerous nuclear encoded mitochondrial genes and vacuolar H+-ATPase genes was significantly down-regulated, while that of histone genes was significantly up-regulated. We previously showed that the uaf-1 gene, encoding key splicing factor U2AF large subunit, could affect the behavior and lifespan of smn-1 mutants. Here, we found that smn-1 and uaf-1 interact to affect the recognition of 3' and 5' splice sites in a gene-specific manner. Altogether, our results suggest a functional interaction between smn-1 and uaf-1 in affecting RNA splicing and a potential effect of smn-1 on the expression of mitochondrial and histone genes.


Efficacy and long-term safety of CRISPR/Cas9 genome editing in the SOD1-linked mouse models of ALS.

  • Han-Xiang Deng‎ et al.
  • Communications biology‎
  • 2021‎

CRISPR/Cas9-mediated genome editing provides potential for therapeutic development. Efficacy and long-term safety represent major concerns that remain to be adequately addressed in preclinical studies. Here we show that CRISPR/Cas9-mediated genome editing in two distinct SOD1-amyotrophic lateral sclerosis (ALS) transgenic mouse models prevented the development of ALS-like disease and pathology. The disease-linked transgene was effectively edited, with rare off-target editing events. We observed frequent large DNA deletions, ranging from a few hundred to several thousand base pairs. We determined that these large deletions were mediated by proximate identical sequences in Alu elements. No evidence of other diseases was observed beyond 2 years of age in these genome edited mice. Our data provide preclinical evidence of the efficacy and long-term safety of the CRISPR/Cas9 therapeutic approach. Moreover, the molecular mechanism of proximate identical sequences-mediated recombination provides mechanistic information to optimize therapeutic targeting design, and to avoid or minimize unintended and potentially deleterious recombination events.


Angiostrongylus cantonensis Galectin-1 interacts with Annexin A2 to impair the viability of macrophages via activating JNK pathway.

  • Xiaomeng Shi‎ et al.
  • Parasites & vectors‎
  • 2020‎

Angiostrongylus cantonensis can cause severe symptoms of central nervous system infections. In the host, this parasite localizes in the blood and cerebrospinal fluid, and its secreted components can impact immune responses. Our previous study demonstrated that immune responses were inhibited in A. cantonensis-infected mice immunized with Ac-Galectin-1 (AcGal-1). However, the mechanisms by which AcGal-1 regulates the immune responses remain unclear. Macrophages are innate immune cells that rapidly respond to infection. The direct impact of AcGal-1 on macrophages may affect the immune responses.


RBM-5 modulates U2AF large subunit-dependent alternative splicing in C. elegans.

  • Chuanman Zhou‎ et al.
  • RNA biology‎
  • 2018‎

A key step in pre-mRNA splicing is the recognition of 3' splicing sites by the U2AF large and small subunits, a process regulated by numerous trans-acting splicing factors. How these trans-acting factors interact with U2AF in vivo is unclear. From a screen for suppressors of the temperature-sensitive (ts) lethality of the C. elegans U2AF large subunit gene uaf-1(n4588) mutants, we identified mutations in the RNA binding motif gene rbm-5, a homolog of the tumor suppressor gene RBM5. rbm-5 mutations can suppress uaf-1(n4588) ts-lethality by loss of function and neuronal expression of rbm-5 was sufficient to rescue the suppression. Transcriptome analyses indicate that uaf-1(n4588) affected the expression of numerous genes and rbm-5 mutations can partially reverse the abnormal gene expression to levels similar to that of wild type. Though rbm-5 mutations did not obviously affect alternative splicing per se, they can suppress or enhance, in a gene-specific manner, the altered splicing of genes in uaf-1(n4588) mutants. Specifically, the recognition of a weak 3' splice site was more susceptible to the effect of rbm-5. Our findings provide novel in vivo evidence that RBM-5 can modulate UAF-1-dependent RNA splicing and suggest that RBM5 might interact with U2AF large subunit to affect tumor formation.


A novel ALS-associated variant in UBQLN4 regulates motor axon morphogenesis.

  • Brittany M Edens‎ et al.
  • eLife‎
  • 2017‎

The etiological underpinnings of amyotrophic lateral sclerosis (ALS) are complex and incompletely understood, although contributions to pathogenesis by regulators of proteolytic pathways have become increasingly apparent. Here, we present a novel variant in UBQLN4 that is associated with ALS and show that its expression compromises motor axon morphogenesis in mouse motor neurons and in zebrafish. We further demonstrate that the ALS-associated UBQLN4 variant impairs proteasomal function, and identify the Wnt signaling pathway effector beta-catenin as a UBQLN4 substrate. Inhibition of beta-catenin function rescues the UBQLN4 variant-induced motor axon phenotypes. These findings provide a strong link between the regulation of axonal morphogenesis and a new ALS-associated gene variant mediated by protein degradation pathways.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: