Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 890 papers

Cold induces micro- and nano-scale reorganization of lipid raft markers at mounds of T-cell membrane fluctuations.

  • Yong Chen‎ et al.
  • PloS one‎
  • 2009‎

Whether and how cold causes changes in cell-membrane or lipid rafts remain poorly characterized. Using the NSOM/QD and confocal imaging systems, we found that cold caused microscale redistribution of lipid raft markers, GM1 for lipid and CD59 for protein, from the peripheral part of microdomains to the central part on Jurkat T cells, and that cold also induced the nanoscale size-enlargement (1/3- to 2/3-fold) of the nanoclusters of lipid raft markers and even the colocalization of GM1 and CD59 nanoclusters. These findings indicate cold-induced lateral rearrangement/coalescence of raft-related membrane heterogeneity. The cold-induced re-distribution of lipid raft markers under a nearly-natural condition provide clues for their alternations, and help to propose a model in which raft lipids associate themselves or interact with protein components to generate functional membrane heterogeneity in response to stimulus. The data also underscore the possible cold-induced artifacts in early-described cold-related experiments and the detergent-resistance-based analyses of lipid rafts at 4 degrees C, and provide a biophysical explanation for recently-reported cold-induced activation of signaling pathways in T cells. Importantly, our fluorescence-topographic NSOM imaging demonstrated that GM1/CD59 raft markers distributed and re-distributed at mounds but not depressions of T-cell membrane fluctuations. Such mound-top distribution of lipid raft markers or lipid rafts provides spatial advantage for lipid rafts or contact molecules interacting readily with neighboring cells or free molecules.


LILRA3 binds both classical and non-classical HLA class I molecules but with reduced affinities compared to LILRB1/LILRB2: structural evidence.

  • Myongchol Ryu‎ et al.
  • PloS one‎
  • 2011‎

Structurally, Group 1 LILR (Leukocyte Immunoglobulin (Ig)-Like Receptor, also known as Ig-like transcripts, ILT; Leukocyte Ig-like receptor, LIR; and CD85) members are very similar in terms of the HLAIs (human leukocyte antigen class I molecules) binding region and were hypothesized that they all bind to HLAIs. As one of the Group 1 LILRs, LILRA3 is the only secretory LILR and may greatly control the inhibitory immune response induced by LILRB1, LILRB2, and other HLA-binding LILR molecules like LILRA1. Nevertheless, little was known about the binding of LILRA3 to HLAIs. In this report, we present the crystal structure of the LILRA3 domain 1 (D1) and evaluate the D1 and D1D2 (domain 1 and domain 2) binding to classical and non-classical HLAIs using BIAcore® surface plasmon resonance analysis (SPR). We found that LILRA3 binds both classical HLA-A*0201 and non-classical HLA-G1 but with reduced affinities compared to either LILRB1 or LILRB2. The polymorphic amino acids and the LILRA3 D1 structure support this notion.


Gene therapy with tumor-specific promoter mediated suicide gene plus IL-12 gene enhanced tumor inhibition and prolonged host survival in a murine model of Lewis lung carcinoma.

  • Yu Xu‎ et al.
  • Journal of translational medicine‎
  • 2011‎

Gene therapy is a promising therapeutic approach for cancer. Targeted expression of desired therapeutic proteins within the tumor is the best approach to reduce toxicity and improve survival. This study is to establish a more effective and less toxic gene therapy of cancer.


Dimeric SecA couples the preprotein translocation in an asymmetric manner.

  • Ying Tang‎ et al.
  • PloS one‎
  • 2011‎

The Sec translocase mediates the post-translational translocation of a number of preproteins through the inner membrane in bacteria. In the initiatory translocation step, SecB targets the preprotein to the translocase by specific interaction with its receptor SecA. The latter is the ATPase of Sec translocase which mediates the post-translational translocation of preprotein through the protein-conducting channel SecYEG in the bacterial inner membrane. We examined the structures of Escherichia coli Sec intermediates in solution as visualized by negatively stained electron microscopy in order to probe the oligomeric states of SecA during this process. The symmetric interaction pattern between the SecA dimer and SecB becomes asymmetric in the presence of proOmpA, and one of the SecA protomers predominantly binds to SecB/proOmpA. Our results suggest that during preprotein translocation, the two SecA protomers are different in structure and may play different roles.


Genome-wide discovery of missing genes in biological pathways of prokaryotes.

  • Yong Chen‎ et al.
  • BMC bioinformatics‎
  • 2011‎

Reconstruction of biological pathways is typically done through mapping well-characterized pathways of model organisms to a target genome, through orthologous gene mapping. A limitation of such pathway-mapping approaches is that the mapped pathway models are constrained by the composition of the template pathways, e.g., some genes in a target pathway may not have corresponding genes in the template pathways, the so-called "missing gene" problem.


Cross-sectional and longitudinal association of serum alanine aminotransaminase and γ-glutamyltransferase with metabolic syndrome in middle-aged and elderly Chinese people.

  • Yu Xu‎ et al.
  • Journal of diabetes‎
  • 2011‎

Although associations of the liver enzymes alanine aminotransaminase (ALT) and γ-glutamyltransferase (GGT) with metabolic syndrome (MetS) are well recognized, whether they are independent of insulin resistance and which enzyme is more effective are yet to be clarified.


Expression and prognostic value of miR-486-5p in patients with gastric adenocarcinoma.

  • Hui Chen‎ et al.
  • PloS one‎
  • 2015‎

MicroRNA (miR)-486-5p expression is often reduced in human cancers. However, its expression in gastric carcinoma and its relation to clinicopathological features and prognosis are unclear. Tissue microarrays were constructed from 84 patients with gastric adenocarcinoma (GC) who were undergoing radical resection. miR-486-5p expression was detected by miRNA-locked nucleic acid in situ hybridization, and its correlations with clinicopathological features and overall survival were analyzed. Bioinformatic studies predict that fibroblast growth factor 9 (FGF9) is a potential target gene of miR-486-5p. miR-486-5p was mainly located in the cytoplasm of GC cells and neighboring normal tissues. Compared with paracancerous normal tissue, miR-486-5p expression was decreased in 63.1% (53/84) of the GC samples, increased in 32.1% (27/84) and unchanged in 4.8% (4/84). FGF9 expression was decreased in 69.0% (58/84) of GC samples and increased in 31.0% (26/84) compared with normal paracancerous tissues using immunohistochemical analysis. Low or unchanged miR-486-5p expression (P = 0.002), tumor stage (P = 0.001), tumor status (P = 0.001), node status (P = 0.001), tumor size (P = 0.004), and depth of tumor invasion (P = 0.013) were significant negative prognostic predictors for overall survival in patients with GC. After stratification according to American Joint Committee on Cancer (AJCC) stage, low/unchanged miR-486-5p expression remained a significant predictor of poor survival in stage II (P = 0.024) and stage III (P = 0.003). Cox regression analysis identified the following predictors of poor prognosis: tumor status (hazard ratio [HR], 7.19; 95% confidence interval [CI], 1.75-29.6; P = 0.006), stage (HR, 2.62; 95%CI, 1.50-4.59; P = 0.001), lymph node metastasis (HR, 2.52; 95% CI, 1.27-4.99; P = 0.008), low/unchanged miR-486-5p (HR, 2.47; 95% CI, 1.35-4.52; P = 0.003), high level of FGF9 (HR, 2.41; 95% CI, 1.42-4.09; P = 0.001) and tumor size (HR, 2.50; 95% CI, 1.30-4.82; P = 0.006). Low or unchanged expression of miR-486-5p compared with neighboring normal tissues was associated with a poor prognosis, while high expression was associated with a good prognosis in GC. miR-486-5p may thus be useful for evaluating prognosis and may provide a novel target treatment in patients with GC.


Involvement of glycolysis/gluconeogenesis and signaling regulatory pathways in Saccharomyces cerevisiae biofilms during fermentation.

  • Zhenjian Li‎ et al.
  • Frontiers in microbiology‎
  • 2015‎

Compared to free (free-living) cells, biofilm cells show increased resistance and stability to high-pressure fermentation conditions, although the reasons underlying these phenomena remain unclear. Here, we investigated biofilm formation with immobilized Saccharomyces cerevisiae cells grown on fiber surfaces during the process of ethanol fermentation. The development of biofilm colonies was visualized by fluorescent labeling and confocal microscopy. RNA from yeast cells at three different biofilm development periods was extracted and sequenced by high-throughput sequencing. We quantitated gene expression differences between biofilm cells and free cells and found that 2098, 1556, and 927 genes were significantly differentially expressed, respectively. We also validated the expression of previously reported genes and identified novel genes and pathways under the control of this system. Statistical analysis revealed that biofilm genes show significant gene expression changes principally in the initial period of biofilm formation compared to later periods. Carbohydrate metabolism, amino acid metabolism, signal transduction, and oxidoreductase activity were needed for biofilm formation. In contrast to previous findings, we observed some differential expression performances of FLO family genes, indicating that cell aggregation in our immobilized fermentation system was possibly independent of flocculation. Cyclic AMP-protein kinase A and mitogen-activated protein kinase pathways regulated signal transduction pathways during yeast biofilm formation. We found that carbohydrate metabolism, especially glycolysis/gluconeogenesis, played a key role in the development of S. cerevisiae biofilms. This work provides an important dataset for future studies aimed at gaining insight into the regulatory mechanisms of immobilized cells in biofilms, as well as for optimizing bioprocessing applications with S. cerevisiae.


Piperlongumine selectively kills hepatocellular carcinoma cells and preferentially inhibits their invasion via ROS-ER-MAPKs-CHOP.

  • Yong Chen‎ et al.
  • Oncotarget‎
  • 2015‎

Hepatocellular carcinomas (HCC) are highly malignant and aggressive tumors lack of effective therapeutic drugs. Piperlongumine (PL), a natural product isolated from longer pepper plants, is recently identified as a potent cytotoxic compound highly selective to cancer cells. Here, we reported that PL specifically suppressed HCC cell migration/invasion via endoplasmic reticulum (ER)-MAPKs-CHOP signaling pathway. PL selectively killed HCC cells but not normal hepatocytes with an IC50 of 10-20 µM while PL at much lower concentrations only suppressed HCC cell migration/invasion. PL selectively elevated reactive oxygen species (ROS) in HCC cells, which activated or up-regulated downstream PERK/Ire 1α/Grp78, p38/JNK/Erk and CHOP subsequently. Administration of antioxidants completely abolished PL's effects on cell death and migration/invasion. However, pharmacological inhibition of ER stress-responses or MAPKs signaling pathways with corresponding specific inhibitors only reversed PL's effect on cell migration/invasion but not on cell death. Consistently, knocking-down of CHOP by RNA interference only reversed PL-suppressed HCC cell migration. Finally, PL significantly suppressed HCC development and activated the ER-MAPKs-CHOP signaling pathway in HCC xenografts in vivo. Taken together, PL selectively killed HCC cells and preferentially inhibited HCC cell migration/invasion via ROS-ER-MAPKs-CHOP axis, suggesting a novel therapeutic strategy for the highly malignant and aggressive HCC clinically.


Functional classification and mutation analysis of a synpolydactyly kindred.

  • Jianda Zhou‎ et al.
  • Experimental and therapeutic medicine‎
  • 2014‎

The aim of the present study was to analyze a congenital syndactyly/polydactyly kindred and propose a new functional classification method of clinical significance. The modes of inheritance and mutational mechanisms were also determined using genetic analyses. Hand and foot anatomy and functions were measured using photographic images, X-ray imaging and grip ability tests. Genetic analysis comprised the genotyping of polymorphic microsatellite markers at known polydactyly-associated loci and the sequencing of the candidate gene. A functional classification system was devised to divide the clinical features into three types, which included mild, moderate or severe deformity. The family was concluded to have syndactyly type II with autosomal dominant inheritance. The microsatellites, D2S2310 and D2S2314, at the 2q31-32 chromosome, which have previously been associated with synpolydactyly type I, were found to be associated with the disorder in the current family. A 27-bp insertion mutation was identified in the affected individuals in the HOXD13 gene at this locus. The insertion added a further nine alanine residues to the polyalanine stretch within the encoded protein. In conclusion, the functional classification method described in the present study may be used to guide surgical approaches to treatment. A family was identified in whom expansion of the polyalanine tract in the HOXD13 gene causes autosomal dominant hereditary synpolydactyly.


N2O emissions from an apple orchard in the coastal area of Bohai Bay, China.

  • Baohua Xie‎ et al.
  • TheScientificWorldJournal‎
  • 2014‎

Using static chambers and gas chromatography, nitrous oxide (N2O) fluxes from an apple orchard soil in the Bohai Bay region of China were measured from February 2010 to February 2011. In this study, two nitrogen (N) fertilizer treatments were designed--without (CK) or with (SN) synthetic N fertilizers (800 kg N ha(-1)). The annual cumulative N2O emissions from CK and SN were 34.6 ± 3.0 (mean ± standard error) and 44.3 ± 6.0 kg N2O-N ha(-1), respectively. Such high emissions resulted from the intensive N fertilization in the experimental and previous years. The direct emission factor (EFd) of N2O induced by the applied synthetic N fertilizers was 1.2%. The EFd is within the range of previous studies carried out in other croplands, which suggests that it is reasonable to estimate regional N2O emissions from apple orchards using the EFd obtained in other croplands. In addition, significant positive correlations existed between N2O fluxes and soil temperatures or soil dissolved organic carbon contents.


Myeloperoxidase-oxidized high density lipoprotein impairs atherosclerotic plaque stability by inhibiting smooth muscle cell migration.

  • Boda Zhou‎ et al.
  • Lipids in health and disease‎
  • 2017‎

High density lipoprotein (HDL) has been proved to be a protective factor for coronary heart disease. Notably, HDL in atherosclerotic plaques can be nitrated (NO2-oxHDL) and chlorinated (Cl-oxHDL) by myeloperoxidase (MPO), likely compromising its cardiovascular protective effects.


Neonatal Immune State Is Influenced by Maternal Allergic Rhinitis and Associated With Regulatory T cells.

  • Lu Tan‎ et al.
  • Allergy, asthma & immunology research‎
  • 2017‎

Maternal influences contribute to the origin of allergic diseases, but the mechanisms are not clear. The current literature prompted the role of epigenetics in the development of allergic diseases. We sought to investigate the roles of regulatory T (Treg) cells and Forkhead box p3 (Foxp3) DNA methylation in the process of maternal transmission of allergic rhinitis (AR) susceptibility.


New use of an old drug: inhibition of breast cancer stem cells by benztropine mesylate.

  • Jihong Cui‎ et al.
  • Oncotarget‎
  • 2017‎

Cancer stem cells (CSCs) play major roles in cancer initiation, metastasis, recurrence and therapeutic resistance. Targeting CSCs represents a promising strategy for cancer treatment. The purpose of this study was to identify selective inhibitors of breast CSCs (BCSCs). We carried out a cell-based phenotypic screening with cell viability as a primary endpoint, using a collection of 2,546 FDA-approved drugs and drug-like molecules in spheres formed by malignant human breast gland-derived cells (HMLER-shEcad cells, representing BCSCs) and control immortalized non-tumorigenic human mammary cells (HMLE cells, representing normal stem cells). 19 compounds were identified from screening. The chemically related molecules benztropine mesylate and deptropine citrate were selected for further validation and both potently inhibited sphere formation and self-renewal of BCSCs in vitro. Benztropine mesylate treatment decreased cell subpopulations with high ALDH activity and with a CD44+/CD24- phenotype. In vivo, benztropine mesylate inhibited tumor-initiating potential in a 4T1 mouse model. Functional studies indicated that benztropine mesylate inhibits functions of CSCs via the acetylcholine receptors, dopamine transporters/receptors, and/or histamine receptors. In summary, our findings identify benztropine mesylate as an inhibitor of BCSCs in vitro and in vivo. This study also provides a screening platform for identification of additional anti-CSC agents.


Single liver lobe repopulation with wildtype hepatocytes using regional hepatic irradiation cures jaundice in Gunn rats.

  • Hongchao Zhou‎ et al.
  • PloS one‎
  • 2012‎

Preparative hepatic irradiation (HIR), together with mitotic stimulation of hepatocytes, permits extensive hepatic repopulation by transplanted hepatocytes in rats and mice. However, whole liver HIR is associated with radiation-induced liver disease (RILD), which limits its potential therapeutic application. In clinical experience, restricting HIR to a fraction of the liver reduces the susceptibility to RILD. Here we test the hypothesis that repopulation of selected liver lobes by regional HIR should be sufficient to correct some inherited metabolic disorders.


Integrated omics study delineates the dynamics of lipid droplets in Rhodococcus opacus PD630.

  • Yong Chen‎ et al.
  • Nucleic acids research‎
  • 2014‎

Rhodococcus opacus strain PD630 (R. opacus PD630), is an oleaginous bacterium, and also is one of few prokaryotic organisms that contain lipid droplets (LDs). LD is an important organelle for lipid storage but also intercellular communication regarding energy metabolism, and yet is a poorly understood cellular organelle. To understand the dynamics of LD using a simple model organism, we conducted a series of comprehensive omics studies of R. opacus PD630 including complete genome, transcriptome and proteome analysis. The genome of R. opacus PD630 encodes 8947 genes that are significantly enriched in the lipid transport, synthesis and metabolic, indicating a super ability of carbon source biosynthesis and catabolism. The comparative transcriptome analysis from three culture conditions revealed the landscape of gene-altered expressions responsible for lipid accumulation. The LD proteomes further identified the proteins that mediate lipid synthesis, storage and other biological functions. Integrating these three omics uncovered 177 proteins that may be involved in lipid metabolism and LD dynamics. A LD structure-like protein LPD06283 was further verified to affect the LD morphology. Our omics studies provide not only a first integrated omics study of prokaryotic LD organelle, but also a systematic platform for facilitating further prokaryotic LD research and biofuel development.


NDM-1-producing strains, family Enterobacteriaceae, in hospital, Beijing, China.

  • Guang Zhou‎ et al.
  • Emerging infectious diseases‎
  • 2014‎

No abstract available


Novel insights into the synergistic interaction of a thioredoxin reductase inhibitor and TRAIL: the activation of the ASK1-ERK-Sp1 pathway.

  • Tingting Lin‎ et al.
  • PloS one‎
  • 2013‎

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces cell death in various types of cancer cells but has little or no effects on normal cells. Unfortunately, not all cancer cells respond to TRAIL; therefore, TRAIL sensitizing agents are currently being explored. Here, we reported that 6-(4-N,N-dimethylaminophenyltelluro)-6-deoxy-β-cyclodextrin (DTCD), a cyclodextrin-derived diorganyl telluride which has been identified as an excellent inhibitor of thioredoxin reductase (TrxR), could sensitize TRAIL resistant human ovarian cancer cells to undergo apoptosis. In vitro, DTCD enhanced TRAIL-induced cytotoxicity in human ovarian cancer cells through up-regulation of DR5. Luciferase analysis and CHIP assays showed that DTCD increased DR5 promoter activity via Sp1 activation. Additionally, DTCD stimulated extracellular signal-regulated kinase (ERK) activation, while the ERK inhibitor PD98059 blocked DTCD-induced DR5 expression and suppressed binding of Sp1 to the DR5 promoter. We further demonstrated that DTCD could induce the release of ASK1 from its complex with Trx-1, and recovered its kinase activity. Meanwhile, suppression of ASK1 by RNA interference led to decreased ERK phosphorylation induced by DTCD. The underlying mechanisms reveal that Trx-1 is heavily oxidized in response to DTCD treatment, in accordance with the fact that DTCD could inhibit the activity of TrxR that reduces oxidized Trx-1. Moreover, using an A2780 xenograft model, DTCD plus TRAIL significantly inhibited the growth of tumor in vivo. Our results suggest that Trx/TrxR system inhibition may play a critical role in apoptosis by combined treatment with DTCD and TRAIL, and raise the possibility that their combination may be a promising strategy for ovarian carcinoma treatment.


NEDD4-1 regulates migration and invasion of glioma cells through CNrasGEF ubiquitination in vitro.

  • Hao Zhang‎ et al.
  • PloS one‎
  • 2013‎

Neuronal precursor cell-expressed developmentally down-regulated 4-1 (NEDD4-1) plays a great role in tumor cell growth, but its function and mechanism in cell invasive behavior are totally unknown. Here we report that NEDD4-1 regulates migration and invasion of malignant glioma cells via triggering ubiquitination of cyclic nucleotide Ras guanine nucleotide exchange factor (CNrasGEF) using cultured glioma cells. NEDD4-1 overexpression promoted cell migration and invasion, while its downregulation specifically inhibited them. However, NEDD4-1 did not affect the proliferation and apoptosis of glioma cells. NEDD4-1 physically interacted with CNrasGEF and promoted its poly-ubiquitination and degradation. Contrary to the effect of NEDD4-1, CNrasGEF downregulation promoted cell migration and invasion, while its overexpression inhibited them. Importantly, downregulation of CNrasGEF facilitated the effect of NEDD4-1-induced cell migration and invasion. Interestingly, aberrant up-regulated NEDD4-1 showed reverse correlation with CNrasGEF protein level but not with its mRNA level in glioma tissues. Combined with the in vitro results, the result of glioma tissues indicated post-translationally modification effect of NEDD4-1 on CNrasGEF. Our study suggests that NEDD4-1 regulates cell migration and invasion through ubiquitination of CNrasGEF in vitro.


Building KCNQ1/KCNE1 channel models and probing their interactions by molecular-dynamics simulations.

  • Yu Xu‎ et al.
  • Biophysical journal‎
  • 2013‎

The slow delayed rectifier (I(KS)) channel is composed of KCNQ1 (pore-forming) and KCNE1 (auxiliary) subunits, and functions as a repolarization reserve in the human heart. Design of I(KS)-targeting anti-arrhythmic drugs requires detailed three-dimensional structures of the KCNQ1/KCNE1 complex, a task made possible by Kv channel crystal structures (templates for KCNQ1 homology-modeling) and KCNE1 NMR structures. Our goal was to build KCNQ1/KCNE1 models and extract mechanistic information about their interactions by molecular-dynamics simulations in an explicit lipid/solvent environment. We validated our models by confirming two sets of model-generated predictions that were independent from the spatial restraints used in model-building. Detailed analysis of the molecular-dynamics trajectories revealed previously unrecognized KCNQ1/KCNE1 interactions, whose relevance in I(KS) channel function was confirmed by voltage-clamp experiments. Our models and analyses suggest three mechanisms by which KCNE1 slows KCNQ1 activation: by promoting S6 bending at the Pro hinge that closes the activation gate; by promoting a downward movement of gating charge on S4; and by establishing a network of electrostatic interactions with KCNQ1 on the extracellular surface that stabilizes the channel in a pre-open activated state. Our data also suggest how KCNE1 may affect the KCNQ1 pore conductance.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: