Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

Broad antiviral peptides against PRRSV based on novel linear epitopes on porcine CD163.

  • Guangwei Han‎ et al.
  • International journal of biological macromolecules‎
  • 2022‎

PRRSV causes major economic losses to swine industry world-wide, which requires innovative antiviral agents. Porcine scavenger receptor CD163 has been identified as an essential fusion receptor for Porcine reproductive and respiratory Syndrome Virus (PRRSV) infection. In this study, novel antiviral peptides from pCD163 against PRRSV were developed based on broad neutralizing monoclonal antibodies. SRCR-5-9 of pCD163 from baculovirus efficiently binds to PRRSVs of lineage 8 and lineage 1, blocking infection in PAMs. A batch of monoclonal antibodies targeting SRCR-5-9 were generated and characterized. 8H2 and 4H7 block PRRSV infection by the disruption in viral attachment to PAMs. Virus titer reduced 100-1000 folds in average and the virus copy number decreased about 104 folds with these antibodies. Linear epitopes of 8H2 and 4H7 were individually localized in SRCR6 (1-30 aa) and PSTI(1-15aa) of pCD163. Mutations of SRCR6 NI1718KT and PST SS1314AA abolished the recognition of 8H2 and 4H7 to the corresponding region individually. Peptides derived from the linear epitopes displayed a broad inhibitory effect on PRRSVs of different lineages in a dose-dependent manner and further modulated PRRSV-related NF-κB pathway. In conclusion, these findings deepen the understanding in the interaction between PRRSV and pCD163 receptor and provide alternative universal antiviral strategies against PRRSV.


The truncated form of flagellin (tFlic) provides the 2dCap subunit vaccine with better immunogenicity and protective effects in mice.

  • Ying Lu‎ et al.
  • Animal diseases‎
  • 2022‎

Porcine circovirus type 2 (PCV2) is the main causative agent of porcine circovirus-associated diseases, and it causes substantial economic losses in the swine industry each year. It is crucial to develop an effective vaccine against the circulating strain PCV2d, which is prone to substantial degrees of mutation. In this study, a truncated form of flagellin (tFlic: 85-111 aa) was inserted into the C-terminal sequence of 2dCap, and Western blotting results showed that recombinant Cap-tFlic VLPs were successfully expressed. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) data indicated that purified recombinant Cap-tFlic fusion proteins existed in the form of polymers and that tFlic could not affect the formation and internalization of VLPs. Integrated Cap-tFlic VLPs induced the expression of antigen presentation-related factors (MHC-II and CD86) by bone marrow-derived dendritic cells (BM-DCs), and the expression of TLR5-related factors (TNF-α) was dramatically elevated. Mice intramuscularly immunized with Cap-tFlic VLPs exhibited significantly higher levels of Cap-specific antibodies and neutralizing antibodies than mice immunized with wild-type Cap VLPs. The data obtained in the current study indicate that Cap-tFlic may be a candidate for a subunit vaccine against PCV2 in the future.


A versatile reporter system for CRISPR-mediated chromosomal rearrangements.

  • Yingxiang Li‎ et al.
  • Genome biology‎
  • 2015‎

Although chromosomal deletions and inversions are important in cancer, conventional methods for detecting DNA rearrangements require laborious indirect assays. Here we develop fluorescent reporters to rapidly quantify CRISPR/Cas9-mediated deletions and inversions. We find that inversion depends on the non-homologous end-joining enzyme LIG4. We also engineer deletions and inversions for a 50 kb Pten genomic region in mouse liver. We discover diverse yet sequence-specific indels at the rearrangement fusion sites. Moreover, we detect Cas9 cleavage at the fourth nucleotide on the non-complementary strand, leading to staggered instead of blunt DNA breaks. These reporters allow mechanisms of chromosomal rearrangements to be investigated.


Limb development genes underlie variation in human fingerprint patterns.

  • Jinxi Li‎ et al.
  • Cell‎
  • 2022‎

Fingerprints are of long-standing practical and cultural interest, but little is known about the mechanisms that underlie their variation. Using genome-wide scans in Han Chinese cohorts, we identified 18 loci associated with fingerprint type across the digits, including a genetic basis for the long-recognized "pattern-block" correlations among the middle three digits. In particular, we identified a variant near EVI1 that alters regulatory activity and established a role for EVI1 in dermatoglyph patterning in mice. Dynamic EVI1 expression during human development supports its role in shaping the limbs and digits, rather than influencing skin patterning directly. Trans-ethnic meta-analysis identified 43 fingerprint-associated loci, with nearby genes being strongly enriched for general limb development pathways. We also found that fingerprint patterns were genetically correlated with hand proportions. Taken together, these findings support the key role of limb development genes in influencing the outcome of fingerprint patterning.


H3.3-G34R Mutation-Mediated Epigenetic Reprogramming Leads to Enhanced Efficacy of Immune Stimulatory Gene Therapy in Pediatric High-Grade Gliomas.

  • Maria B Garcia-Fabiani‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Pediatric high-grade gliomas (pHGGs) are diffuse and highly aggressive CNS tumors which remain incurable, with a 5-year overall survival of less than 20%. Within glioma, mutations in the genes encoding the histones H3.1 and H3.3 have been discovered to be age-restricted and specific of pHGGs. This work focuses on the study of pHGGs harboring the H3.3-G34R mutation. H3.3-G34R tumors represent the 9-15% of pHGGs, are restricted to the cerebral hemispheres, and are found predominantly in the adolescent population (median 15.0 years). We have utilized a genetically engineered immunocompetent mouse model for this subtype of pHGG generated via the Sleeping Beauty-transposon system. The analysis of H3.3-G34R genetically engineered brain tumors by RNA-Sequencing and ChIP-Sequencing revealed alterations in the molecular landscape associated to H3.3-G34R expression. In particular, the expression of H3.3-G34R modifies the histone marks deposited at the regulatory elements of genes belonging to the JAK/STAT pathway, leading to an increased activation of this pathway. This histone G34R-mediated epigenetic modifications lead to changes in the tumor immune microenvironment of these tumors, towards an immune-permissive phenotype, making these gliomas susceptible to TK/Flt3L immune-stimulatory gene therapy. The application of this therapeutic approach increased median survival of H3.3-G34R tumor bearing animals, while stimulating the development of anti-tumor immune response and immunological memory. Our data suggests that the proposed immune-mediated gene therapy has potential for clinical translation for the treatment of patients harboring H3.3-G34R high grade gliomas.


Characterization of Oyster Voltage-Dependent Anion Channel 2 (VDAC2) Suggests Its Involvement in Apoptosis and Host Defense.

  • Yingxiang Li‎ et al.
  • PloS one‎
  • 2016‎

Genomic and transcriptomic studies have revealed a sophisticated and powerful apoptosis regulation network in oyster, highlighting its adaptation to sessile life in a highly stressful intertidal environment. However, the functional molecular basis of apoptosis remains largely unexplored in oysters. In this study, we focused on a representative apoptotic gene encoding voltage-dependent anion channel 2 (VDAC2), a porin that abounds at the mitochondrial outer membrane. This is the first report on the identification and characterization of a VDAC gene in the Pacific oyster, Crassostrea gigas (CgVDAC2). The full length of CgVDAC2 was 1,738 bp with an open reading frame of 843 bp that encoded a protein of 281 amino acids. A four-element eukaryotic porin signature motif, a conserved ATP binding motif, and a VKAKV-like sequence were identified in the predicted CgVDAC2. Expression pattern analysis in different tissues and developmental stages as well as upon infection by ostreid herpesvirus 1 revealed the energy supply-related and immunity-related expression of CgVDAC2. CgVDAC2 was co-localized with mitochondria when it was transiently transfected into HeLa cells. Overexpression of CgVDAC2 in HEK293T cells suppressed the UV irradiation-induced apoptosis by inhibiting the pro-apoptotic function of CgBak. RNA interference induced reduction in CgVDAC2 expression showed a promoted apoptosis level upon UV light irradiation in hemocytes. The yeast two-hybrid system and co-immunoprecipitation assay indicated a direct interaction between CgVDAC2 and the pro-apoptotic protein CgBak. This study revealed the function of VDAC2 in oyster and provided new insights into its involvement in apoptosis modulation and host defense in mollusks.


Classify hyperdiploidy status of multiple myeloma patients using gene expression profiles.

  • Yingxiang Li‎ et al.
  • PloS one‎
  • 2013‎

Multiple myeloma (MM) is a cancer of antibody-making plasma cells. It frequently harbors alterations in DNA and chromosome copy numbers, and can be divided into two major subtypes, hyperdiploid (HMM) and non-hyperdiploid multiple myeloma (NHMM). The two subtypes have different survival prognosis, possibly due to different but converging paths to oncogenesis. Existing methods for identifying the two subtypes are fluorescence in situ hybridization (FISH) and copy number microarrays, with increased cost and sample requirements. We hypothesize that chromosome alterations have their imprint in gene expression through dosage effect. Using five MM expression datasets that have HMM status measured by FISH and copy number microarrays, we have developed and validated a K-nearest-neighbor method to classify MM into HMM and NHMM based on gene expression profiles. Classification accuracy for test datasets ranges from 0.83 to 0.88. This classification will enable researchers to study differences and commonalities of the two MM subtypes in disease biology and prognosis using expression datasets without need for additional subtype measurements. Our study also supports the advantages of using cancer specific characteristics in feature design and pooling multiple rounds of classification results to improve accuracy. We provide R source code and processed datasets at www.ChengLiLab.org/software.


Significant East Asian Affinity of the Sichuan Hui Genomic Structure Suggests the Predominance of the Cultural Diffusion Model in the Genetic Formation Process.

  • Yan Liu‎ et al.
  • Frontiers in genetics‎
  • 2021‎

The ancestral origin and genomic history of Chinese Hui people remain to be explored due to the paucity of genome-wide data. Some evidence argues that an eastward migration of Central Asians gave rise to modern Hui people, which is referred to as the demic diffusion hypothesis; other evidence favors the cultural diffusion hypothesis, which posits that East Asians adopted Muslim culture to form the modern culturally distinct populations. However, the extent to which the observed genetic structure of the Huis was mediated by the movement of people or the assimilation of Muslim culture also remains highly contentious. Analyses of over 700 K SNPs in 109 western Chinese individuals (49 Sichuan Huis and 60 geographically close Nanchong Hans) together with the available ancient and modern Eurasian sequences allowed us to fully explore the genomic makeup and origin of Hui and neighboring Han populations. The results from PCA, ADMIXTURE, and allele-sharing-based f-statistics revealed a strong genomic affinity between Sichuan Huis and Neolithic-to-modern Northern East Asians, which suggested a massive gene influx from East Asians into the Sichuan Hui people. Three-way admixture models in the qpWave/qpAdm analyses further revealed a small stream of gene influx from western Eurasians into the Sichuan Hui people, which was further directly confirmed via the admixture event from the temporally distinct Western sources to Sichuan Hui people in the qpGraph-based phylogenetic model, suggesting the key role of the cultural diffusion model in the genetic formation of the Sichuan Huis. ALDER-based admixture date estimation showed that this observed western Eurasian admixture signal was introduced into the Sichuan Huis during the historic periods, which was concordant with the extensive western-eastern communication along the Silk Road and historically documented Huis' migration history. In summary, although significant cultural differentiation exists between Hui people and their neighbors, our genomic analysis showed their strong genetic affinity with modern and ancient Northern East Asians. Our results support the hypothesis that the Sichuan Huis arose from a mixture of minor western Eurasian ancestry and predominant East Asian ancestry.


FXR1 regulates transcription and is required for growth of human cancer cells with TP53/FXR2 homozygous deletion.

  • Yichao Fan‎ et al.
  • eLife‎
  • 2017‎

Tumor suppressor p53 prevents cell transformation by inducing apoptosis and other responses. Homozygous TP53 deletion occurs in various types of human cancers for which no therapeutic strategies have yet been reported. TCGA database analysis shows that the TP53 homozygous deletion locus mostly exhibits co-deletion of the neighboring gene FXR2, which belongs to the Fragile X gene family. Here, we demonstrate that inhibition of the remaining family member FXR1 selectively blocks cell proliferation in human cancer cells containing homozygous deletion of both TP53 and FXR2 in a collateral lethality manner. Mechanistically, in addition to its RNA-binding function, FXR1 recruits transcription factor STAT1 or STAT3 to gene promoters at the chromatin interface and regulates transcription thus, at least partially, mediating cell proliferation. Our study anticipates that inhibition of FXR1 is a potential therapeutic approach to targeting human cancers harboring TP53 homozygous deletion.


CRISPR/Cas9-mediated genome editing induces exon skipping by alternative splicing or exon deletion.

  • Haiwei Mou‎ et al.
  • Genome biology‎
  • 2017‎

CRISPR is widely used to disrupt gene function by inducing small insertions and deletions. Here, we show that some single-guide RNAs (sgRNAs) can induce exon skipping or large genomic deletions that delete exons. For example, CRISPR-mediated editing of β-catenin exon 3, which encodes an autoinhibitory domain, induces partial skipping of the in-frame exon and nuclear accumulation of β-catenin. A single sgRNA can induce small insertions or deletions that partially alter splicing or unexpected larger deletions that remove exons. Exon skipping adds to the unexpected outcomes that must be accounted for, and perhaps taken advantage of, in CRISPR experiments.


Alcohol Use and Depression: A Mendelian Randomization Study From China.

  • Chen Zhu‎ et al.
  • Frontiers in genetics‎
  • 2020‎

Background: Alcohol use has been linked to a number of physical conditions, but the relationship between alcohol drinking and depression, one of the most common mental disorders that is a significant contributor to the global burden of disease, is still under debate. We aim to help fill the literature gap on the causal effect of alcohol use on depression by using genetic instruments of ALDH2 rs671 and ADH1B rs1229984 in the Mendelian randomization (MR) framework. Materials and Methods: We collected a sample of 476 middle-aged and older adults from mainland China. The 10-item Center for Epidemiologic Studies Depression Scale (CESD-10) was used to measure the status of depression. The frequency and intensity of alcohol consumption were measured by (1) a binary indicator of drinking or not, (2) the total number of drinking occasions during the past 30 days, and (3) the weekly ethanol consumption in grams. Results: MR estimates indicated that alcohol use was causally associated with a lower risk of depression. Parameter estimates of drinking or not (b = -0.127, p = 0.048), number of drinking occasions (b = -0.012, p = 0.040), and weekly ethanol consumption (b = -0.001, p = 0.039) were all negative and statistically significant. The results were robust after adjustments for potential confounders (e.g., income, smoking, and parental drinking behaviors), and the exclusion of heavy or former drinkers. Conclusions: This is one of the first study to investigate the causal relationship between alcohol use and mental health using an MR design in East Asian populations. Further studies are needed to clarify the mechanisms of this causal link.


Scleral HIF-1α is a prominent regulatory candidate for genetic and environmental interactions in human myopia pathogenesis.

  • Fei Zhao‎ et al.
  • EBioMedicine‎
  • 2020‎

Myopia is a good model for understanding the interaction between genetics and environmental stimuli. Here we dissect the biological processes affecting myopia progression.


Characterization of an inhibitor of apoptosis protein in Crassostrea gigas clarifies its role in apoptosis and immune defense.

  • Tao Qu‎ et al.
  • Developmental and comparative immunology‎
  • 2015‎

The inhibitor of apoptosis (IAP) proteins maintain a balance between cell proliferation and cell death by inhibiting caspase activity and facilitating immune responses. In this study, phylogenetic analysis revealed lineage-specific expansion and tandem duplication of IAPs in the Pacific oyster Crassostrea gigas. We then investigated a representative oyster-specific XIAP-like gene (CgIAP2) to understand how it regulates initiator caspase. Cloning of full-length CgIAP2 from oyster cDNA uncovered a deduced protein containing two BIR domains and a RING domain. Homolog comparison demonstrated that CgIAP2 clustered into the invertebrate branch. We found that CgIAP2 was likely involved in apoptosis inhibition and immune defense, based on high mRNA expression in the gills and labial palps, as well as increased mRNA expression after bacterial challenge. A yeast two-hybrid assay revealed that the BIR2 domain was necessary and sufficient to mediate interaction between CgIAP2 and Cgcaspase-2, providing direct evidence that CgIAP2 participates in apoptosis inhibition.


Cell-Cycle-Targeting MicroRNAs as Therapeutic Tools against Refractory Cancers.

  • Per Hydbring‎ et al.
  • Cancer cell‎
  • 2017‎

Cyclins and cyclin-dependent kinases (CDKs) are hyperactivated in numerous human tumors. To identify means of interfering with cyclins/CDKs, we performed nine genome-wide screens for human microRNAs (miRNAs) directly regulating cell-cycle proteins. We uncovered a distinct class of miRNAs that target nearly all cyclins/CDKs, which are very effective in inhibiting cancer cell proliferation. By profiling the response of over 120 human cancer cell lines, we derived an expression-based algorithm that can predict the response of tumors to cell-cycle-targeting miRNAs. Using systemic administration of nanoparticle-formulated miRNAs, we inhibited tumor progression in seven mouse xenograft models, including three treatment-refractory patient-derived tumors, without affecting normal tissues. Our results highlight the utility of using cell-cycle-targeting miRNAs for treatment of refractory cancer types.


What is creating the height premium? New evidence from a Mendelian randomization analysis in China.

  • Jun Wang‎ et al.
  • PloS one‎
  • 2020‎

This study uses a Mendelian randomization approach to resolve the difficulties of identifying the causal relationship between height and earnings by using a unique sample of 3,427 respondents from mainland China with sociodemographic information linked to individual genotyping data. Exploiting genetic variations to create instrumental variables for observed height, we find that while OLS regressions yield that an additional centimeter in height is associated with a 10-13% increase in one's annual earnings, IV estimates reveal only an insubstantial causal effect of height. Further analyses suggest that the observed height premium is likely to pick up the impacts of several cognitive/noncognitive skills on earnings confounded in previous studies, such as mental health, risk preference, and personality factors. Our study is the first empirical study that employs genetic IVs in developing countries, and our results contribute to the recent debate on the mechanism of height premium.


Population Genetic Analysis of Modern and Ancient DNA Variations Yields New Insights Into the Formation, Genetic Structure, and Phylogenetic Relationship of Northern Han Chinese.

  • Pengyu Chen‎ et al.
  • Frontiers in genetics‎
  • 2019‎

Modern East Asians derived from the admixture of aborigines and incoming farmers expanding from Yellow and Yangtze River Basins. Distinct genetic differentiation and subsequent admixture between Northeast Asians and Southeast Asians subsequently evidenced by the mitochondrial DNA, Y-chromosomal variations, and autosomal SNPs. Recently, population geneticists have paid more attention to the genetic polymorphisms and background of southern-Han Chinese and southern native populations. The genetic legacy of northern-Han remains uncharacterized. Thus, we performed this comprehensive population genetic analyses of modern and ancient genetic variations aiming to yield new insight into the formation of modern Han, and the genetic ancestry and phylogenetic relationship of the northern-Han Chinese population. We first genotyped 25 forensic associated markers in 3,089 northern-Han Chinese individuals using the new-generation of the Huaxia Platinum System. And then we performed the first meta-analysis focused on the genetic affinity between Asian Neolithic∼Iron Age ancients and modern northern-Han Chinese by combining mitochondrial variations in 417 ancient individuals from 13 different archeological sites and 812 modern individuals, as well as Y-chromosomal variations in 114 ancient individuals from 12 Neolithic∼Iron Age sites and 2,810 modern subjects. We finally genotyped 643,897 genome-wide nucleotide polymorphisms (SNPs) in 20 Shanxi Han individuals and combined with 1,927 modern humans and 40 Eurasian ancient genomes to explore the genetic structure and admixture of northern-Han Chinese. We addressed genetic legacy, population structure and phylogenetic relationship of northern-Han Chinese via various analyses. Our population genetic results from five different reference datasets indicated that Shanxi Han shares a closer phylogenetic relationship with northern-neighbors and southern ethnically close groups than with Uyghur and Tibetan. Genome-wide variations revealed that modern northern-Han derived their ancestry from Yakut-related population (25.2%) and She-related population (74.8%). Summarily, the genetic mixing that led to the emergence of a Han Chinese ethnicity occurred at a very early period, probably in Neolithic times, and this mixing involved an ancient Tibeto-Burman population and a local pre-Sinitic population, which may have been linguistically Altaic.


Male-Dominated Migration and Massive Assimilation of Indigenous East Asians in the Formation of Muslim Hui People in Southwest China.

  • Qiyan Wang‎ et al.
  • Frontiers in genetics‎
  • 2020‎

The origin and diversification of Muslim Hui people in China via demic or simple cultural diffusion is a long-going debate. We here generated genome-wide data at nearly 700,000 single nucleotide polymorphisms (SNPs) from 45 Hui and 14 Han Chinese individuals collected from Guizhou province in southwest China. We applied principal component analysis (PCA), ADMIXTURE, f-statistics, qpWave, and qpAdm analysis to infer the population genetic structure and admixture history. Our results revealed the Guizhou Hui people have a limited amount of West Eurasian related ancestry at a proportion of 6%, but show massive genetic assimilation with indigenous southern Han Chinese and Tibetan or Tungusic/Mongolic related northern East Asians. We also detected a high frequency of North Asia or Central Asia related paternal Y-chromosome but not maternal mtDNA lineages in Guizhou Hui. Our observation supports the cultural diffusion has played a vital role in the formation of Hui people and the migration of Hui people to southwest China was probably a sex-biased male-driven process.


MicroRNA-382 Promotes M2-Like Macrophage via the SIRP-α/STAT3 Signaling Pathway in Aristolochic Acid-Induced Renal Fibrosis.

  • Xiaoyan Wang‎ et al.
  • Frontiers in immunology‎
  • 2022‎

Aristolochic acid nephropathy (AAN) is a type of drug-induced nephropathy and is correlated with a potentially progression of kidney fibrosis. However, whether miR-382 is implicated in macrophage activation in AA-induced kidney fibrosis remains elusive. Here, cell-sorting experiments defined a significant miR-382 enrichment in renal macrophage after AAN 14 days. Then, we found that treatment of AA induced a significant switch in the phenotype of macrophage both in vivo and in vitro. Furthermore, miR-382 knockout (KO) mice and miR-382-/- bone marrow-derived macrophage (BMDM) were subjected to AA induction. We found that both systemic KO and macrophage-specific miR-382 depletion notably suppressed M2-like macrophage activation as well as kidney interstitial fibrosis. Additionally, adoptive transfer of miR-382 overexpression BMDMs into mice promoted AA-induced kidney injury. Moreover, in cultured macrophage, upregulation of miR-382 promoted M2-related gene expression, accompanied by downregulation of signal regulatory protein α (SIRP-α) and activation of signal transducer and activator of transcription 3 (STAT3). The interaction between miR-382 and SIRP-α was evaluated via dual-luciferase assay. Knockdown of SIRP-α upregulated phosphorylated STAT3 at S727 and Y705. Pharmacological inhibition of STAT3 was performed both in vivo and in vitro. Inhibition of STAT3 attenuated AA-induced kidney fibrosis, in parallel to lesser macrophage M2 polarization. Coculture experiments further confirmed that overexpressed miR-382 in macrophage promoted injuries of tubular cells. Luminex bio-chip detection suggested that IL-4 and CCL-5 were critical in the cross talk between macrophages and tubular cells. Taken together, our data suggest that miR-382 is a critical mediator in M2-like macrophage polarization and can be a promising therapeutic target for kidney fibrosis.


GCAF(TMEM251) regulates lysosome biogenesis by activating the mannose-6-phosphate pathway.

  • Weichao Zhang‎ et al.
  • Nature communications‎
  • 2022‎

The mannose-6-phosphate (M6P) biosynthetic pathway for lysosome biogenesis has been studied for decades and is considered a well-understood topic. However, whether this pathway is regulated remains an open question. In a genome-wide CRISPR/Cas9 knockout screen, we discover TMEM251 as the first regulator of the M6P modification. Deleting TMEM251 causes mistargeting of most lysosomal enzymes due to their loss of M6P modification and accumulation of numerous undigested materials. We further demonstrate that TMEM251 localizes to the Golgi and is required for the cleavage and activity of GNPT, the enzyme that catalyzes M6P modification. In zebrafish, TMEM251 deletion leads to severe developmental defects including heart edema and skeletal dysplasia, which phenocopies Mucolipidosis Type II. Our discovery provides a mechanism for the newly discovered human disease caused by TMEM251 mutations. We name TMEM251 as GNPTAB cleavage and activity factor (GCAF) and its related disease as Mucolipidosis Type V.


Molecular Characterization and Functional Analysis of a Putative Octopamine/Tyramine Receptor during the Developmental Stages of the Pacific Oyster, Crassostrea gigas.

  • Peng Ji‎ et al.
  • PloS one‎
  • 2016‎

Octopamine (OA) and its precursor, tyramine (TA), participate in invertebrate development such as growth, maturation, and reproduction by activating their corresponding G protein-coupled receptors (GPCRs). Although OA was first discovered in mollusks (octopus), subsequent studies on OA, TA and related receptors have primarily been conducted in Ecdysozoa, especially in insects. Accordingly, only limited reports on OA/TA receptors in mollusks are available and their physiological roles remain unclear. Here, a full-length cDNA encoding a putative 524 amino acid OA/TA receptor (CgGPR1) was isolated from the Pacific oyster Crassostrea gigas. CgGPR1 was most closely related to the Lymnaea stagnalis OA receptor OAR2 in sequence. Phylogenetic analysis showed that CgGPR1 belongs to a poorly studied subfamily of invertebrate OA/TA receptors. The spatio-temporal expression of CgGPR1 in C. gigas larvae was examined by quantitative real-time PCR and Western blot analysis. CgGPR1 was expressed during all developmental stages of C. gigas with higher levels at mid-developmental stages, indicating its potential role in embryogenesis and tissue differentiation. Immunoreactive fluorescence of CgGPR1 was mainly observed in the velum, foot, gill and mantle of C. gigas larvae. CgGPR1 transcripts were detected in all the tested organs of adult C. gigas, with highest level in the mantle. Pharmacological analysis showed that cAMP and Ca2+ concentrations remained unchanged in HEK293 cells expressing CgGPR1 upon addition of OA, TA or related amines, suggesting that CgGPR1 modulates other unknown molecules rather than cAMP and Ca2+. Our study sheds light on CgGPR1 function in oysters.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: