Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

MR1-restricted MAIT cells display ligand discrimination and pathogen selectivity through distinct T cell receptor usage.

  • Marielle C Gold‎ et al.
  • The Journal of experimental medicine‎
  • 2014‎

Mucosal-associated invariant T (MAIT) cells express a semi-invariant T cell receptor (TCR) that detects microbial metabolites presented by the nonpolymorphic major histocompatibility complex (MHC)-like molecule MR1. The highly conserved nature of MR1 in conjunction with biased MAIT TCRα chain usage is widely thought to indicate limited ligand presentation and discrimination within a pattern-like recognition system. Here, we evaluated the TCR repertoire of MAIT cells responsive to three classes of microbes. Substantial diversity and heterogeneity were apparent across the functional MAIT cell repertoire as a whole, especially for TCRβ chain sequences. Moreover, different pathogen-specific responses were characterized by distinct TCR usage, both between and within individuals, suggesting that MAIT cell adaptation was a direct consequence of exposure to various exogenous MR1-restricted epitopes. In line with this interpretation, MAIT cell clones with distinct TCRs responded differentially to a riboflavin metabolite. These results suggest that MAIT cells can discriminate between pathogen-derived ligands in a clonotype-dependent manner, providing a basis for adaptive memory via recruitment of specific repertoires shaped by microbial exposure.


Cancer genome sequencing and its implications for personalized cancer vaccines.

  • Lijin Li‎ et al.
  • Cancers‎
  • 2011‎

New DNA sequencing platforms have revolutionized human genome sequencing. The dramatic advances in genome sequencing technologies predict that the $1,000 genome will become a reality within the next few years. Applied to cancer, the availability of cancer genome sequences permits real-time decision-making with the potential to affect diagnosis, prognosis, and treatment, and has opened the door towards personalized medicine. A promising strategy is the identification of mutated tumor antigens, and the design of personalized cancer vaccines. Supporting this notion are preliminary analyses of the epitope landscape in breast cancer suggesting that individual tumors express significant numbers of novel antigens to the immune system that can be specifically targeted through cancer vaccines.


CD161++ CD8+ T cells, including the MAIT cell subset, are specifically activated by IL-12+IL-18 in a TCR-independent manner.

  • James E Ussher‎ et al.
  • European journal of immunology‎
  • 2014‎

CD161(++) CD8(+) T cells represent a novel subset that is dominated in adult peripheral blood by mucosal-associated invariant T (MAIT) cells, as defined by the expression of a variable-α chain 7.2 (Vα7.2)-Jα33 TCR, and IL-18Rα. Stimulation with IL-18+IL-12 is known to induce IFN-γ by both NK cells and, to a more limited extent, T cells. Here, we show the CD161(++) CD8(+) T-cell population is the primary T-cell population triggered by this mechanism. Both CD161(++) Vα7.2(+) and CD161(++) Vα7.2(-) T-cell subsets responded to IL-12+IL-18 stimulation, demonstrating this response was not restricted to the MAIT cells, but to the CD161(++) phenotype. Bacteria and TLR agonists also indirectly triggered IFN-γ expression via IL-12 and IL-18. These data show that CD161(++) T cells are the predominant T-cell population that responds directly to IL-12+IL-18 stimulation. Furthermore, our findings broaden the potential role of MAIT cells beyond bacterial responsiveness to potentially include viral infections and other inflammatory stimuli.


A herpesvirus encoded Qa-1 mimic inhibits natural killer cell cytotoxicity through CD94/NKG2A receptor engagement.

  • Xiaoli Wang‎ et al.
  • eLife‎
  • 2018‎

A recurrent theme in viral immune evasion is the sabotage of MHC-I antigen presentation, which brings virus the concomitant issue of 'missing-self' recognition by NK cells that use inhibitory receptors to detect surface MHC-I proteins. Here, we report that rodent herpesvirus Peru (RHVP) encodes a Qa-1 like protein (pQa-1) via RNA splicing to counteract NK activation. While pQa-1 surface expression is stabilized by the same canonical peptides presented by murine Qa-1, pQa-1 is GPI-anchored and resistant to the activity of RHVP pK3, a ubiquitin ligase that targets MHC-I for degradation. pQa-1 tetramer staining indicates that it recognizes CD94/NKG2A receptors. Consistently, pQa-1 selectively inhibits NKG2A+ NK cells and expression of pQa-1 can protect tumor cells from NK control in vivo. Collectively, these findings reveal an innovative NK evasion strategy wherein RHVP encodes a modified Qa-1 mimic refractory to MHC-I sabotage and capable of specifically engaging inhibitory receptors to circumvent NK activation.


Cowpox virus exploits the endoplasmic reticulum retention pathway to inhibit MHC class I transport to the cell surface.

  • Minji Byun‎ et al.
  • Cell host & microbe‎
  • 2007‎

Major histocompatibility complex (MHC) class I molecules assemble with peptides in the ER lumen and are transported via Golgi to the plasma membrane for recognition by T cells. Inhibiting MHC assembly, transport, and surface expression are common viral strategies of evading immune recognition. Cowpox virus, a clinically relevant orthopoxvirus, downregulates MHC class I expression on infected cells. However, the viral protein(s) and mechanisms responsible are unknown. We identify CPXV203 as a cowpox virus protein that associates with fully assembled MHC class I molecules and blocks their transport through the Golgi. A C-terminal KTEL motif in CPXV203 closely resembles the canonical ER retention motif KDEL and is required for CPXV203 function, indicating that a physiologic pathway is exploited to retain MHC class I in the ER. This viral mechanism for MHC class I downregulation may explain virulence differences between clinical isolates of orthopoxviruses.


MR1 uses an endocytic pathway to activate mucosal-associated invariant T cells.

  • Shouxiong Huang‎ et al.
  • The Journal of experimental medicine‎
  • 2008‎

Like CD1d-restricted iNKT cells, mucosal-associated invariant T cells (MAITs) are "innate" T cells that express a canonical TCRalpha chain, have a memory phenotype, and rapidly secrete cytokines upon TCR ligation. Unlike iNKT cells, MAIT cells require the class Ib molecule MHC-related protein I (MR1), B cells, and gut flora for development and/or expansion, and they preferentially reside in the gut lamina propria. Evidence strongly suggests that MAIT cell activation is ligand-dependent, but the nature of MR1 ligand is unknown. In this study, we define a mechanism of endogenous antigen presentation by MR1 to MAIT cells. MAIT cell activation was dependent neither on a proteasome-processed ligand nor on the chaperoning by the MHC class I peptide loading complex. However, MAIT cell activation was enhanced by overexpression of MHC class II chaperones Ii and DM and was strikingly diminished by silencing endogenous Ii. Furthermore, inhibiting the acidification of the endocytic compartments reduced MR1 surface expression and ablated MAIT cell activation. The importance of the late endosome for MR1 antigen presentation was further corroborated by the localization of MR1 molecules in the multivesicular endosomes. These findings demonstrate that MR1 traffics through endocytic compartments, thereby allowing MAIT cells to sample both endocytosed and endogenous antigens.


Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells.

  • Rangsima Reantragoon‎ et al.
  • The Journal of experimental medicine‎
  • 2013‎

Mucosal-associated invariant T cells (MAIT cells) express a semi-invariant T cell receptor (TCR) α-chain, TRAV1-2-TRAJ33, and are activated by vitamin B metabolites bound by the major histocompatibility complex (MHC)-related class I-like molecule, MR1. Understanding MAIT cell biology has been restrained by the lack of reagents to specifically identify and characterize these cells. Furthermore, the use of surrogate markers may misrepresent the MAIT cell population. We show that modified human MR1 tetramers loaded with the potent MAIT cell ligand, reduced 6-hydroxymethyl-8-D-ribityllumazine (rRL-6-CH₂OH), specifically detect all human MAIT cells. Tetramer(+) MAIT subsets were predominantly CD8(+) or CD4(-)CD8(-), although a small subset of CD4(+) MAIT cells was also detected. Notably, most human CD8(+) MAIT cells were CD8α(+)CD8β(-/lo), implying predominant expression of CD8αα homodimers. Tetramer-sorted MAIT cells displayed a T(H)1 cytokine phenotype upon antigen-specific activation. Similarly, mouse MR1-rRL-6-CH₂OH tetramers detected CD4(+), CD4(-)CD8(-) and CD8(+) MAIT cells in Vα19 transgenic mice. Both human and mouse MAIT cells expressed a broad TCR-β repertoire, and although the majority of human MAIT cells expressed TRAV1-2-TRAJ33, some expressed TRAJ12 or TRAJ20 genes in conjunction with TRAV1-2. Accordingly, MR1 tetramers allow precise phenotypic characterization of human and mouse MAIT cells and revealed unanticipated TCR heterogeneity in this population.


MAIT cell recognition of MR1 on bacterially infected and uninfected cells.

  • Mary H Young‎ et al.
  • PloS one‎
  • 2013‎

Mucosal-associated invariant T cells are a unique population of T cells that express a semi-invariant αβ TCR and are restricted by the MHC class I-related molecule MR1. MAIT cells recognize uncharacterized ligand(s) presented by MR1 through the cognate interaction between their TCR and MR1. To understand how the MAIT TCR recognizes MR1 at the surface of APCs cultured both with and without bacteria, we undertook extensive mutational analysis of both the MAIT TCR and MR1 molecule. We found differential contribution of particular amino acids to the MAIT TCR-MR1 interaction based upon the presence of bacteria, supporting the hypothesis that the structure of the MR1 molecules with the microbial-derived ligand(s) differs from the one with the endogenous ligand(s). Furthermore, we demonstrate that microbial-derived ligand(s) is resistant to proteinase K digestion and does not extract with common lipids, suggesting an unexpected class of antigen(s) might be recognized by this unique lymphocyte population.


Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3.

  • Xiaoli Wang‎ et al.
  • The Journal of cell biology‎
  • 2007‎

The mechanism by which substrates for endoplasmic reticulum-associated degradation are retrotranslocated to the cytosol remains largely unknown, although ubiquitination is known to play a key role. The mouse gamma-herpesvirus protein mK3 is a viral RING-CH-type E3 ligase that specifically targets nascent major histocompatibility complex I heavy chain (HC) for degradation, thus blocking the immune detection of virus-infected cells. To address the question of how HC is retrotranslocated and what role mK3 ligase plays in this action, we investigated ubiquitin conjugation sites on HC using mutagenesis and biochemistry approaches. In total, our data demonstrate that mK3-mediated ubiquitination can occur via serine, threonine, or lysine residues on the HC tail, each of which is sufficient to induce the rapid degradation of HC. Given that mK3 has numerous cellular and viral homologues, it will be of considerable interest to determine the pervasiveness of this novel mechanism of ubiquitination.


Ube2j2 ubiquitinates hydroxylated amino acids on ER-associated degradation substrates.

  • Xiaoli Wang‎ et al.
  • The Journal of cell biology‎
  • 2009‎

Ubiquitin (Ub) modification of proteins plays a prominent role in the regulation of multiple cell processes, including endoplasmic reticulum-associated degradation (ERAD). Until recently, ubiquitination of substrates was thought to occur only via isopeptide bonds, typically to lysine residues. Several recent studies suggest that Ub can also be coupled to nonlysine residues by ester/thiolester bonds; however, the molecular basis for these novel modifications remains elusive. To probe the mechanism and importance of nonlysine ubiquitination, we have studied the viral ligase murine K3 (mK3), which facilitates the polyubiquitination of hydroxylated amino acids serine/threonine on its ERAD substrate. In this paper, we identify Ube2j2 as the primary cellular E2 recruited by the mK3 ligase, and this E2-E3 pair is capable of conjugating Ub on lysine or serine residues of substrates. However, surprisingly, Ube2j2-mK3 preferentially promotes ubiquitination of hydroxylated amino acids via ester bonds even when lysine residues are present on wild-type substrates, thus establishing physiological relevance of this novel ubiquitination strategy.


Human mucosal associated invariant T cells detect bacterially infected cells.

  • Marielle C Gold‎ et al.
  • PLoS biology‎
  • 2010‎

Control of infection with Mycobacterium tuberculosis (Mtb) requires Th1-type immunity, of which CD8+ T cells play a unique role. High frequency Mtb-reactive CD8+ T cells are present in both Mtb-infected and uninfected humans. We show by limiting dilution analysis that nonclassically restricted CD8+ T cells are universally present, but predominate in Mtb-uninfected individuals. Interestingly, these Mtb-reactive cells expressed the Valpha7.2 T-cell receptor (TCR), were restricted by the nonclassical MHC (HLA-Ib) molecule MR1, and were activated in a transporter associated with antigen processing and presentation (TAP) independent manner. These properties are all characteristics of mucosal associated invariant T cells (MAIT), an "innate" T-cell population of previously unknown function. These MAIT cells also detect cells infected with other bacteria. Direct ex vivo analysis demonstrates that Mtb-reactive MAIT cells are decreased in peripheral blood mononuclear cells (PBMCs) from individuals with active tuberculosis, are enriched in human lung, and respond to Mtb-infected MR1-expressing lung epithelial cells. Overall, these findings suggest a generalized role for MAIT cells in the detection of bacterially infected cells, and potentially in the control of bacterial infection.


Optimized polyepitope neoantigen DNA vaccines elicit neoantigen-specific immune responses in preclinical models and in clinical translation.

  • Lijin Li‎ et al.
  • Genome medicine‎
  • 2021‎

Preclinical studies and early clinical trials have shown that targeting cancer neoantigens is a promising approach towards the development of personalized cancer immunotherapies. DNA vaccines can be rapidly and efficiently manufactured and can integrate multiple neoantigens simultaneously. We therefore sought to optimize the design of polyepitope DNA vaccines and test optimized polyepitope neoantigen DNA vaccines in preclinical models and in clinical translation.


Structural mechanism of ER retrieval of MHC class I by cowpox.

  • William H McCoy‎ et al.
  • PLoS biology‎
  • 2012‎

One of the hallmarks of viral immune evasion is the capacity to disrupt major histocompatibility complex class I (MHCI) antigen presentation to evade T-cell detection. Cowpox virus encoded protein CPXV203 blocks MHCI surface expression by exploiting the KDEL-receptor recycling pathway, and here we show that CPXV203 directly binds a wide array of fully assembled MHCI proteins, both classical and non-classical. Further, the stability of CPXV203/MHCI complexes is highly pH dependent, with dramatically increased affinities at the lower pH of the Golgi relative to the endoplasmic reticulum (ER). Crystallographic studies reveal that CPXV203 adopts a beta-sandwich fold similar to poxvirus chemokine binding proteins, and binds the same highly conserved MHCI determinants located under the peptide-binding platform that tapasin, CD8, and natural killer (NK)-receptors engage. Mutagenesis of the CPXV203/MHCI interface identified the importance of two CPXV203 His residues that confer low pH stabilization of the complex and are critical to ER retrieval of MHCI. These studies clarify mechanistically how CPXV203 coordinates with other cowpox proteins to thwart antigen presentation.


TLR signaling in human antigen-presenting cells regulates MR1-dependent activation of MAIT cells.

  • James E Ussher‎ et al.
  • European journal of immunology‎
  • 2016‎

Mucosal-associated invariant T (MAIT) cells are an abundant innate-like T lymphocyte population that are enriched in liver and mucosal tissues. They are restricted by MR1, which presents antigens derived from a metabolic precursor of riboflavin synthesis, a pathway present in many microbial species, including commensals. Therefore, MR1-mediated MAIT cell activation must be tightly regulated to prevent inappropriate activation and immunopathology. Using an in vitro model of MR1-mediated activation of primary human MAIT cells, we investigated the mechanisms by which it is regulated. Uptake of intact bacteria by antigen presenting cells (APCs) into acidified endolysosomal compartments was required for efficient MR1-mediated MAIT cell activation, while stimulation with soluble ligand was inefficient. Consistent with this, little MR1 was seen at the surface of human monocytic (THP1) and B-cell lines. Activation with a TLR ligand increased the amount of MR1 at the surface of THP1 but not B-cell lines, suggesting differential regulation in different cell types. APC activation and NF-κB signaling were critical for MR1-mediated MAIT cell activation. In primary cells, however, prolonged TLR signaling led to downregulation of MR1-mediated MAIT cell activation. Overall, MR1-mediated MAIT cell activation is a tightly regulated process, dependent on integration of innate signals by APCs.


Structural insight into MR1-mediated recognition of the mucosal associated invariant T cell receptor.

  • Rangsima Reantragoon‎ et al.
  • The Journal of experimental medicine‎
  • 2012‎

Mucosal-associated invariant T (MAIT) cells express a semiinvariant αβ T cell receptor (TCR) that binds MHC class I-like molecule (MR1). However, the molecular basis for MAIT TCR recognition by MR1 is unknown. In this study, we present the crystal structure of a human Vα7.2Jα33-Vβ2 MAIT TCR. Mutagenesis revealed highly conserved requirements for the MAIT TCR-MR1 interaction across different human MAIT TCRs stimulated by distinct microbial sources. Individual residues within the MAIT TCR β chain were dispensable for the interaction with MR1, whereas the invariant MAIT TCR α chain controlled specificity through a small number of residues, which are conserved across species and located within the Vα-Jα regions. Mutagenesis of MR1 showed that only two residues, which were centrally positioned and on opposing sides of the antigen-binding cleft of MR1, were essential for MAIT cell activation. The mutagenesis data are consistent with a centrally located MAIT TCR-MR1 docking that was dominated by the α chain of the MAIT TCR. This candidate docking mode contrasts with that of the NKT TCR-CD1d-antigen interaction, in which both the α and β chain of the NKT TCR is required for ligation above the F'-pocket of CD1d.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: