Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,043 papers

Proteinuria Is an Independent Risk Factor for First Incident Stroke in Adults Under Treatment for Hypertension in China.

  • Chunyan Zhang‎ et al.
  • Journal of the American Heart Association‎
  • 2015‎

Conflicting evidence exists regarding whether reduced estimated glomerular filtration rate (eGFR) and proteinuria are independent risk factors for stroke and its subtypes in hypertensive patients. This study investigated the association of these renal measures with first incident stroke in adults under treatment for hypertension in China.


Novel ALK inhibitor AZD3463 inhibits neuroblastoma growth by overcoming crizotinib resistance and inducing apoptosis.

  • Yongfeng Wang‎ et al.
  • Scientific reports‎
  • 2016‎

ALK receptor tyrosine kinase has been shown to be a therapeutic target in neuroblastoma. Germline ALK activating mutations are responsible for the majority of hereditary neuroblastoma and somatic ALK activating mutations are also frequently observed in sporadic cases of advanced NB. Crizotinib, a first-line therapy in the treatment of advanced non-small cell lung cancer (NSCLC) harboring ALK rearrangements, demonstrates striking efficacy against ALK-rearranged NB. However, crizotinib fails to effectively inhibit the activity of ALK when activating mutations are present within its kinase domain, as with the F1174L mutation. Here we show that a new ALK inhibitor AZD3463 effectively suppressed the proliferation of NB cell lines with wild type ALK (WT) as well as ALK activating mutations (F1174L and D1091N) by blocking the ALK-mediated PI3K/AKT/mTOR pathway and ultimately induced apoptosis and autophagy. In addition, AZD3463 enhanced the cytotoxic effects of doxorubicin on NB cells. AZD3463 also exhibited significant therapeutic efficacy on the growth of the NB tumors with WT and F1174L activating mutation ALK in orthotopic xenograft mouse models. These results indicate that AZD3463 is a promising therapeutic agent in the treatment of NB.


The Macrophage-depleting Agent Clodronate Promotes Durable Hematopoietic Chimerism and Donor-specific Skin Allograft Tolerance in Mice.

  • Zhanzhuo Li‎ et al.
  • Scientific reports‎
  • 2016‎

Hematopoietic chimerism is known to promote donor-specific organ allograft tolerance; however, clinical translation has been impeded by the requirement for toxic immunosuppression and large doses of donor bone marrow (BM) cells. Here, we investigated in mice whether durable chimerism might be enhanced by pre-treatment of the recipient with liposomal clodronate, a macrophage depleting agent, with the goal of vacating BM niches for preferential reoccupation by donor hematopoietic stem cells (HSC). We found that liposomal clodronate pretreatment of C57BL/6 mice permitted establishment of durable hematopoietic chimerism when the mice were given a low dose of donor BM cells and transient immunosuppression. Moreover, clodronate pre-treatment increased durable donor-specific BALB/c skin allograft tolerance. These results provide proof-of-principle that clodronate is effective at sparing the number of donor BM cells required to achieve durable hematopoietic chimerism and donor-specific skin allograft tolerance and justify further development of a tolerance protocol based on this principle.


Efficacy and Mechanism of Action of Low Dose Emetine against Human Cytomegalovirus.

  • Rupkatha Mukhopadhyay‎ et al.
  • PLoS pathogens‎
  • 2016‎

Infection with human cytomegalovirus (HCMV) is a threat for pregnant women and immunocompromised hosts. Although limited drugs are available, development of new agents against HCMV is desired. Through screening of the LOPAC library, we identified emetine as HCMV inhibitor. Additional studies confirmed its anti-HCMV activities in human foreskin fibroblasts: EC50-40±1.72 nM, CC50-8±0.56 μM, and selectivity index of 200. HCMV inhibition occurred after virus entry, but before DNA replication, and resulted in decreased expression of viral proteins. Synergistic virus inhibition was achieved when emetine was combined with ganciclovir. In a mouse CMV (MCMV) model, emetine was well-tolerated, displayed long half-life, preferential distribution to tissues over plasma, and effectively suppressed MCMV. Since the in vitro anti-HCMV activity of emetine decreased significantly in low-density cells, a mechanism involving cell cycle regulation was suspected. HCMV inhibition by emetine depended on ribosomal processing S14 (RPS14) binding to MDM2, leading to disruption of HCMV-induced MDM2-p53 and MDM2-IE2 interactions. Irrespective of cell density, emetine induced RPS14 translocation into the nucleus during infection. In infected high-density cells, MDM2 was available for interaction with RPS14, resulting in disruption of MDM2-p53 interaction. However, in low-density cells the pre-existing interaction of MDM2-p53 could not be disrupted, and RPS14 could not interact with MDM2. In high-density cells the interaction of MDM2-RPS14 resulted in ubiquitination and degradation of RPS14, which was not observed in low-density cells. In infected-only or in non-infected emetine-treated cells, RPS14 failed to translocate into the nucleus, hence could not interact with MDM2, and was not ubiquitinated. HCMV replicated similarly in RPS14 knockdown or control cells, but emetine did not inhibit virus replication in the former cell line. The interaction of MDM2-p53 was maintained in infected RPS14 knockdown cells despite emetine treatment, confirming a unique mechanism by which emetine exploits RPS14 to disrupt MDM2-p53 interaction. Summarized, emetine may represent a promising candidate for HCMV therapy alone or in combination with ganciclovir through a novel host-dependent mechanism.


Glycyrrhizic Acid Promotes M1 Macrophage Polarization in Murine Bone Marrow-Derived Macrophages Associated with the Activation of JNK and NF-κB.

  • Yulong Mao‎ et al.
  • Mediators of inflammation‎
  • 2015‎

The roots and rhizomes of Glycyrrhiza species (licorice) have been widely used as natural sweeteners and herbal medicines. The aim of this study is to investigate the effect of glycyrrhizic acid (GA) from licorice on macrophage polarization. Both phenotypic and functional activities of murine bone marrow-derived macrophages (BMDMs) treated by GA were assessed. Our results showed that GA obviously increased the cell surface expression of CD80, CD86, and MHCII molecules. Meanwhile, GA upregulated the expression of CCR7 and the production of TNF-α, IL-12, IL-6, and NO (the markers of classically activated (M1) macrophages), whereas it downregulated the expression of MR, Ym1, and Arg1 (the markers of alternatively activated (M2) macrophage). The functional tests showed that GA dramatically enhanced the uptake of FITC-dextran and E. coli K88 by BMDMs and decreased the intracellular survival of E. coli K88 and S. typhimurium. Moreover, we demonstrated that JNK and NF-κB activation are required for GA-induced NO and M1-related cytokines production, while ERK1/2 pathway exhibits a regulatory effect via induction of IL-10. Together, these findings indicated that GA promoted polarization of M1 macrophages and enhanced its phagocytosis and bactericidal capacity. The results expanded our knowledge about the role of GA in macrophage polarization.


GFRα2 prompts cell growth and chemoresistance through down-regulating tumor suppressor gene PTEN via Mir-17-5p in pancreatic cancer.

  • Jiangning Gu‎ et al.
  • Cancer letters‎
  • 2016‎

Nerve growth factors and their receptors have received an increasing attention in certain cancers since they play an important role in regulating tumorigenesis, biological process and metastasis. Here we aimed at characterizing a new function of one of the subtypes of growth factor receptors (GFR), GFRα2, in pancreatic cancer. In this study, we showed that GFRα2 was up-regulated in pancreatic adenocarcinoma and was positively correlated with tumor size and perineural invasion, which indicated that it may be associated with cell growth and apoptosis. Mechanically, we discovered that high GFRα2 expression level leads to PTEN inactivation via enhancing Mir-17-5p level.


Endothelial ATP-binding cassette G1 in mouse endothelium protects against hemodynamic-induced atherosclerosis.

  • Shanshan Xue‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

Activated vascular endothelium inflammation under persistent hyperlipidemia is the initial step of atherogenesis. ATP-binding cassette G1 (ABCG1) is a crucial factor maintaining sterol and lipid homeostasis by transporting cholesterol efflux to high-density lipoprotein. In this study, we investigated the protective effects of ABCG1 in endothelial inflammation activation during early-stage atherogenesis in mice and the underlying mechanisms. Endothelial cell (EC)-specific ABCG1 transgenic (EC-ABCG1-Tg) mice were generated and cross-bred with low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice. After a 4-week Western-type diet, the mice were sacrificed for assessing atherosclerosis. Human umbilical vein ECs were treated with different flows, and ABCG1 was adenovirally overexpressed to investigate the mechanism in vitro. Compared with Ldlr(-/-) mouse aortas, EC-ABCG1-Tg/Ldlr(-/-) aortas showed decreased early-stage lesions. Furthermore, the lesion area in the EC-ABCG1-Tg/Ldlr(-/-) mouse aortic arch but not thoracic aorta was significantly reduced, which suggests a protective role of ABCG1 under atheroprone flow. In vitro, overexpression of ABCG1 attenuated EC activation caused by oscillatory shear stress. Overexpression of ABCG1 blunted cholesterol-activated ECs in vitro. In exploring the mechanisms of ABCG1 attenuating endothelial inflammation, we found that ABCG1 inhibited oscillatory flow-activated nuclear factor kappa B and NLRP3 inflammasome in ECs. ABCG1 may play a protective role in early-stage atherosclerosis by reducing endothelial activation induced by oscillatory shear stress via suppressing the inflammatory response.


Immunolocalization of MMP9 and MMP2 in osteolytic metastasis originating from MDA-MB-231 human breast cancer cells.

  • Bo Liu‎ et al.
  • Molecular medicine reports‎
  • 2016‎

The aim of the present study was to investigate the expression of matrix metalloproteinase (MMP)9 and MMP2, and their potential roles in bone metastasis nests using a well-standardized model of breast cancer bone metastasis in nude mice. BALB/c nu/nu mice (5-week-old; n=10) were subjected to intracardiac injection of MDA-MB-231 human breast cancer cells. After 4 weeks, the mice exhibiting radiolucent lesions in tibiae were sacrificed, and the tibiae were removed for histochemical analysis. The gene expression of MMP2 and MMP9 in the tumor cells, metaphysis and diaphysis of normal BALB/c nu/nu mice were determined using reverse transcription-polymerase chain reaction analysis. The metastatic tumor tissue occupied almost the entire bone marrow cavity. Numerous tartrate-resistant acid phosphatase-positive osteoclasts were found in the metastasized lesions. The invaded tumor cells positive for mammaglobin 1 exhibited different proliferation activities and apoptosis between the metaphysis and diaphysis. Proliferating cell nuclear antigen was expressed at high levels in the metaphyseal area, whereas TdT-mediated dUTP nick-end labeling (TUNEL)-positive cells were more evident in the diaphysis area. Of note, MMP9 was expressed predominantly in the proliferating cell nuclear antigen‑positive area, whereas the expression of MMP2 was observed predominantly in the diaphysis, which had more TUNEL‑positive cells. Taken together, the results suggested that MMP9 and MMP2 may have their own importance in extracellular matrix degradation and trabecular bone damage in different zones of bone metastasis, including the metaphysis and diaphysis.


Excessive Activation of TGFβ by Spinal Instability Causes Vertebral Endplate Sclerosis.

  • Qin Bian‎ et al.
  • Scientific reports‎
  • 2016‎

Narrowed intervertebral disc (IVD) space is a characteristic of IVD degeneration. EP sclerosis is associated with IVD, however the pathogenesis of EP hypertrophy is poorly understood. Here, we employed two spine instability mouse models to investigate temporal and spatial EP changes associated with IVD volume, considering them as a functional unit. We found that aberrant mechanical loading leads to accelerated ossification and hypertrophy of EP, decreased IVD volume and increased activation of TGFβ. Overexpression of active TGFβ in CED mice showed a similar phenotype of spine instability model. Administration of TGFβ Receptor I inhibitor attenuates pathologic changes of EP and prevents IVD narrowing. The aberrant activation of TGFβ resulting in EPs hypertrophy-induced IVD space narrowing provides a pharmacologic target that could have therapeutic potential to delay DDD.


Rational Design of Disulfide Bonds Increases Thermostability of a Mesophilic 1,3-1,4-β-Glucanase from Bacillus terquilensis.

  • Chengtuo Niu‎ et al.
  • PloS one‎
  • 2016‎

1,3-1,4-β-glucanase is an important biocatalyst in brewing industry and animal feed industry, while its low thermostability often reduces its application performance. In this study, the thermostability of a mesophilic β-glucanase from Bacillus terquilensis was enhanced by rational design and engineering of disulfide bonds in the protein structure. Protein spatial configuration was analyzed to pre-exclude the residues pairs which negatively conflicted with the protein structure and ensure the contact of catalytic center. The changes in protein overall and local flexibility among the wild-type enzyme and the designated mutants were predicted to select the potential disulfide bonds for enhancement of thermostability. Two residue pairs (N31C-T187C and P102C-N125C) were chosen as engineering targets and both of them were proved to significantly enhance the protein thermostability. After combinational mutagenesis, the double mutant N31C-T187C/P102C-N125C showed a 48.3% increase in half-life value at 60°C and a 4.1°C rise in melting temperature (Tm) compared to wild-type enzyme. The catalytic property of N31C-T187C/P102C-N125C mutant was similar to that of wild-type enzyme. Interestingly, the optimal pH of double mutant was shifted from pH6.5 to pH6.0, which could also increase its industrial application. By comparison with mutants with single-Cys substitutions, the introduction of disulfide bonds and the induced new hydrogen bonds were proved to result in both local and overall rigidification and should be responsible for the improved thermostability. Therefore, the introduction of disulfide bonds for thermostability improvement could be rationally and highly-effectively designed by combination with spatial configuration analysis and molecular dynamics simulation.


Homocysteine activates vascular smooth muscle cells by DNA demethylation of platelet-derived growth factor in endothelial cells.

  • Donghong Zhang‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2012‎

Hyperhomocysteinemia (HHcy), as an independent risk factor of atherosclerosis, facilitates endothelial dysfunction and activation of vascular smooth muscle cells (VSMCs). However, little is known about the crosstalk between endothelial cells (ECs) and VSMCs under HHcy. We investigated whether homocysteine (Hcy) activates VSMCs by aberrant secretion of mitogen platelet-derived growth factors (PDGFs) from ECs in human and in mice. In this study, we found that increased Hcy level did not affect VSMC activity in 24 hrs until the concentration reached 500 μM. In contrast, Hcy at 100 μM significantly promoted proliferation and migration of VSMCs co-cultured with human ECs. This effect was partially reversed by pretreatment with a PDGF receptor inhibitor. Hcy concentration-dependently upregulated the mRNA level of PDGF-A, -C and -D but not PDGF-B in ECs. Hcy reduced the expression and activity of DNA methyltransferase 1, demethylation of PDGF-A, -C and -D promoters and enhanced the binding activity of transcriptional factor SP-1 to the promoter. Hcy upregulation of PDGF was confirmed in the aortic intima of mice with HHcy. Multivariate regression analysis revealed HHcy was a predictor of increased serum PDGF level in patients. Thus, Hcy upregulates PDGF level via DNA demethylation in ECs, affects cross-talk between ECs and VSMCs and leads to VSMC activation.


Matrix Metalloproteinase-9 Mediates RSV Infection in Vitro and in Vivo.

  • Michele Y F Kong‎ et al.
  • Viruses‎
  • 2015‎

Respiratory Syncytial Virus (RSV) is an important human pathogen associated with substantial morbidity and mortality. The present study tested the hypothesis that RSV infection would increase matrix metalloproteinase (MMP)-9 expression, and that MMP-9 inhibition would decrease RSV replication both in vitro and in vivo. RSV A2 infection of human bronchial epithelial cells increased MMP-9 mRNA and protein release. Cells transfected with siRNA against MMP-9 following RSV infection had lower viral titers. In RSV infected wild-type (WT) mice, MMP-9, airway resistance and viral load peaked at day 2 post infection, and remained elevated on days 4 and 7. RSV infected MMP-9 knockout (KO) mice had decreased lung inflammation. On days 2 and 4 post inoculation, the RSV burden was lower in the MMP-9 KO mice compared to WT controls. In conclusion, our studies demonstrate that RSV infection is a potent stimulus of MMP-9 expression both in vitro and in vivo. Reduction of MMP-9 (via siRNA knockdown, and in MMP-9 KO mice) resulted in decreased viral replication. Our findings suggest MMP-9 is a potential therapeutic target for RSV disease.


Cell cycle control, DNA damage repair, and apoptosis-related pathways control pre-ameloblasts differentiation during tooth development.

  • Chengcheng Liu‎ et al.
  • BMC genomics‎
  • 2015‎

Ameloblast differentiation is the most critical stepwise process in amelogenesis, and it is controlled by precise molecular events. To better understand the mechanism controlling pre-ameloblasts (PABs) differentiation into secretory ameloblasts (SABs), a more precise identification of molecules and signaling networks will elucidate the mechanisms governing enamel formation and lay a foundation for enamel regeneration.


Singapore Grouper Iridovirus ORF75R is a Scaffold Protein Essential for Viral Assembly.

  • Fan Wang‎ et al.
  • Scientific reports‎
  • 2015‎

Singapore Grouper Iridovirus (SGIV) is a member of nucleo cytoplasmic large DNA viruses (NCLDV). This paper reports the functional analysis of ORF75R, a major structural protein of SGIV. Immuno fluorescence studies showed that the protein was accumulated in the viral assembly site. Immunogold-labelling indicated that it was localized between the viral capsid shell and DNA core. Knockdown of ORF75R by morpholinos resulted in the reduction of coreshell thickness, the failure of DNA encapsidation, and the low yield of infectious particles. Comparative proteomics further identified the structural proteins affected by ORF75R knockdown. Two-dimensional gel electrophoresis combined with proteomics demonstrated that ORF75R was phosphorylated at multiple sites in SGIV-infected cell lysate and virions, but the vast majority of ORF75R in virions was the dephosphorylated isoform. A kinase assay showed that ORF75R could be phosphorylated in vitro by the SGIV structural protein ORF39L. Addition of ATP and Mg(2+) into purified virions prompted extensive phosphorylation of structural proteins and release of ORF75R from virions. These data suggest that ORF75R is a novel scaffold protein important for viral assembly and DNA encapsidation, but its phosphorylation facilitates virion disassembly. Compared to proteins from other viruses, we found that ORF75R shares common features with herpes simplex virus VP22.


Distinct regulatory mechanisms governing embryonic versus adult adipocyte maturation.

  • Qiong A Wang‎ et al.
  • Nature cell biology‎
  • 2015‎

Pathological expansion of adipose tissue contributes to the metabolic syndrome. Distinct depots develop at various times under different physiological conditions. The transcriptional cascade mediating adipogenesis is established in vitro, and centres around a core program involving PPARγ and C/EBPα. We developed an inducible, adipocyte-specific knockout system to probe the requirement of key adipogenic transcription factors at various stages of adipogenesis in vivo. C/EBPα is essential for all white adipogenic conditions in the adult stage, such as adipose tissue regeneration, adipogenesis in muscle and unhealthy expansion of white adipose tissue during high-fat feeding or due to leptin deficiency. Surprisingly, terminal embryonic adipogenesis is fully C/EBPα independent, but does however depend on PPARγ; cold-induced beige adipogenesis is also C/EBPα independent. Moreover, C/EBPα is not vital for adipocyte survival in the adult stage. We reveal a surprising diversity of transcriptional signals required at different stages of adipogenesis in vivo.


An eigenvalue transformation technique for predicting drug-target interaction.

  • Qifan Kuang‎ et al.
  • Scientific reports‎
  • 2015‎

The prediction of drug-target interactions is a key step in the drug discovery process, which serves to identify new drugs or novel targets for existing drugs. However, experimental methods for predicting drug-target interactions are expensive and time-consuming. Therefore, the in silico prediction of drug-target interactions has recently attracted increasing attention. In this study, we propose an eigenvalue transformation technique and apply this technique to two representative algorithms, the Regularized Least Squares classifier (RLS) and the semi-supervised link prediction classifier (SLP), that have been used to predict drug-target interaction. The results of computational experiments with these techniques show that algorithms including eigenvalue transformation achieved better performance on drug-target interaction prediction than did the original algorithms. These findings show that eigenvalue transformation is an efficient technique for improving the performance of methods for predicting drug-target interactions. We further show that, in theory, eigenvalue transformation can be viewed as a feature transformation on the kernel matrix. Accordingly, although we only apply this technique to two algorithms in the current study, eigenvalue transformation also has the potential to be applied to other algorithms based on kernels.


SC06, a novel small molecule compound, displays preclinical activity against multiple myeloma by disrupting the mTOR signaling pathway.

  • Kunkun Han‎ et al.
  • Scientific reports‎
  • 2015‎

The mammalian target of rapamycin (mTOR) is extensively involved in multiple myeloma (MM) pathophysiology. In the present study, we reported a novel small molecule SC06 that induced MM cell apoptosis and delayed MM xenograft growth in vivo. Oral administration of SC06 to mice bearing human MM xenografts resulted in significant inhibition of tumor growth at doses that were well tolerated. Mechanistic studies revealed that SC06 selectively inhibited the mTOR signaling pathway but had no effects on other associated kinases, such as AKT, ERK, p38, c-Src and JNK. Further studies showed that SC06-decreased mTOR activation was associated with the downregulation of Raptor, a key component of the mTORC1 complex. SC06 also suppressed the phosphorylation of 4E-BP1 and P70S6K, two typical substrates in the mTORC1 signaling pathway. Notably, expression of Raptor, phosphorylation of mTOR and phosphorylated 4E-BP1 was also decreased in the tumor tissues from SC06-treated mice, which was consistent with the cellular studies. Therefore, given the potency and low toxicity, SC06 could be developed as a potential anti-MM drug candidate by disrupting the mTOR signaling.


Amino acid derivatives of ligustrazine-oleanolic acid as new cytotoxic agents.

  • Fuhao Chu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2014‎

A series of novel ligustrazine-oleanolic acid (TOA) derivatives were designed, and synthesized by conjugating amino acids to the 3-hydroxy group of TOA by ester bonds. Their cytotoxicity was evaluated on four cancer cell lines (HepG2, HT-29, Hela and BGC-823) by standard MTT assays. The ClogP values were calculated by means of computer simulation, and logP values of both 3β-glycine ester olean-12-en-28-oic acid-3,5,6-trimethylpyrazin-2-methyl ester (6a) and TOA were determined using a shake flask-ultraviolet spectrophotometry method. It was found that 6a and the 3β-L-lysine ester-6g not only displayed good cytotoxicity (IC50<3.5 μM) but also possessed better hydrophilicity than TOA. Moreover, 6a (IC50=4.884 μM) had lower nephrotoxicity than both 6g (IC50=2.310 μM) and cisplatin (CDDP, IC50=3.691 μM) on MDCK cells. Combining Giemsa and DAPI staining, it was further verified that 6a could induce HepG2 apoptosis via nuclei fragmentation and had lower nephrotoxicity. In addition, the structure-activity relationships of these derivatives are briefly discussed.


H2AK119Ub1 and H3K27Me3 in molecular staging for survival prediction of patients with pancreatic ductal adenocarcinoma.

  • Shi Chen‎ et al.
  • Oncotarget‎
  • 2014‎

Polycomb group (PcG) proteins Ring1B and EZH2, which have been characterized as catalyzing the two epigenetic modifications H2AK119 monoubiquitination (H2AK119Ub1) and H3K27 trimethylation (H3K27Me3), are well-known epigenetic silencers implicated in embryonic development and tumorigenesis. However, the status of polycomb-associated histone modifications and their clinical implications in pancreatic cancer remain unclear. Here, we performed immunohistochemistry on tissue microarrays (TMAs) containing 80 pairs of human pancreatic cancer specimens to assess the expression levels of Ring1B, H2AK119Ub1, EZH2, and H3K27Me3 in tumors. More than 50% of the tumor cells showed a high expression of H2AK119Ub1, Ring1B, and EZH2, whereas more than 50% of the tumor cells showed a low level of H3K27Me3. Different expression patterns of H2AK119Ub1 and H3K27Me3 in tumors were negatively correlated (r = -0.247, P = 0.027). Both H2AK119Ub1 and H3K27Me3 independently predicted the clinical prognosis. In particular, a combinatorial pattern of elevated H2AK119Ub1 and decreased H3K27Me3 in tumors was significantly correlated with a poorer prognosis. Furthermore, compared to the tumor, lymph node, metastasis (TNM) staging system, histone modifications can discriminate the survival difference more accurately, especially for patients with stage I or stage II tumors. Simultaneous silencing of Ring1B and EZH2 via shRNA depleted H2AK119Ub1 and H3K27Me3 in the pancreatic cancer cells PanC1 and AsPC1, enhanced HOX gene derepression, and inhibited tumor cell growth in vitro and in tumor xenograft models. These results demonstrated that H2AK119Ub1 and H3K27Me3 cooperate in tumors and are associated with the clinical prognosis in combinatorial patterns. We have proposed that epigenetic modifications may serve as discriminatory biomarkers for molecular staging of pancreatic cancer.


NPM1 activates metabolic changes by inhibiting FBP1 while promoting the tumorigenicity of pancreatic cancer cells.

  • Yi Zhu‎ et al.
  • Oncotarget‎
  • 2015‎

The nucleophosmin (NPM1) activates cancer development and progression in many malignant tumors. However, the regulatory role and underlying mechanisms of NPM1 in pancreatic cancer are unknown. In this study, we showed that NPM1 was up-regulated in PDAC, which indicated a poor prognosis. We also identified NPM1 could stimulate aerobic glycolysis and repress fructose-1, 6-bisphosphatase 1 (FBP1) in pancreatic cancer cells. Restoring FBP1 expression partially reversed the tumor-promoting effects of NPM1, while the loss of FBP1 in PDAC tissues was indicative of a poorer prognosis. In sum, NPM1 promotes aerobic glycolysis and tumor progression in patients with pancreatic cancer by inhibiting FBP1.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: