Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 89 papers

Drug Repositioning for Alzheimer's Disease Based on Systematic 'omics' Data Mining.

  • Ming Zhang‎ et al.
  • PloS one‎
  • 2016‎

Traditional drug development for Alzheimer's disease (AD) is costly, time consuming and burdened by a very low success rate. An alternative strategy is drug repositioning, redirecting existing drugs for another disease. The large amount of biological data accumulated to date warrants a comprehensive investigation to better understand AD pathogenesis and facilitate the process of anti-AD drug repositioning. Hence, we generated a list of anti-AD protein targets by analyzing the most recent publically available 'omics' data, including genomics, epigenomics, proteomics and metabolomics data. The information related to AD pathogenesis was obtained from the OMIM and PubMed databases. Drug-target data was extracted from the DrugBank and Therapeutic Target Database. We generated a list of 524 AD-related proteins, 18 of which are targets for 75 existing drugs-novel candidates for repurposing as anti-AD treatments. We developed a ranking algorithm to prioritize the anti-AD targets, which revealed CD33 and MIF as the strongest candidates with seven existing drugs. We also found 7 drugs inhibiting a known anti-AD target (acetylcholinesterase) that may be repurposed for treating the cognitive symptoms of AD. The CAD protein and 8 proteins implicated by two 'omics' approaches (ABCA7, APOE, BIN1, PICALM, CELF1, INPP5D, SPON1, and SOD3) might also be promising targets for anti-AD drug development. Our systematic 'omics' mining suggested drugs with novel anti-AD indications, including drugs modulating the immune system or reducing neuroinflammation that are particularly promising for AD intervention. Furthermore, the list of 524 AD-related proteins could be useful not only as potential anti-AD targets but also considered for AD biomarker development.


Hepatic RIG-I predicts survival and interferon-α therapeutic response in hepatocellular carcinoma.

  • Jin Hou‎ et al.
  • Cancer cell‎
  • 2014‎

In hepatocellular carcinoma (HCC), biomarkers for prediction of prognosis and response to immunotherapy such as interferon-α (IFN-α) would be very useful in the clinic. We found that expression of retinoic acid-inducible gene-I (RIG-I), an IFN-stimulated gene, was significantly downregulated in human HCC tissues. Patients with low RIG-I expression had shorter survival and poorer response to IFN-α therapy, suggesting that RIG-I is a useful prognosis and IFN-α response predictor for HCC patients. Mechanistically, RIG-I enhances IFN-α response by amplifying IFN-α effector signaling via strengthening STAT1 activation. Furthermore, we found that RIG-I deficiency promotes HCC carcinogenesis and that hepatic RIG-I expression is lower in men than in women. RIG-I may therefore be a tumor suppressor in HCC and contribute to HCC gender disparity.


KDM4B and KDM4A promote endometrial cancer progression by regulating androgen receptor, c-myc, and p27kip1.

  • Mei-Ting Qiu‎ et al.
  • Oncotarget‎
  • 2015‎

Epidemiological evidence suggests that elevated androgen levels and genetic variation related to the androgen receptor (AR) increase the risk of endometrial cancer (EC). However, the role of AR in EC is poorly understood. We report that two members of the histone demethylase KDM4 family act as major regulators of AR transcriptional activityin EC. In the MFE-296 cell line, KDM4B and AR upregulate c-myc expression, while in AN3CA cells KDM4A and AR downregulate p27kip1. Additionally, KDM4B expression is positively correlated with AR expression in EC cell lines with high baseline AR expression, while KDM4A and AR expression are positively correlated in low-AR cell lines. In clinical specimens, both KDM4B and KDM4A expression are significantly higher in EC tissues than that in normal endometrium. Finally, patients with alterations in AR, KDM4B, KDM4A, and c-myc have poor overall and disease-free survival rates. Together, these findings demonstrate that KDM4B and KDM4A promote EC progression by regulating AR activity.


Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals.

  • Jose A Martínez-González‎ et al.
  • Nature communications‎
  • 2017‎

Chiral nematic liquid crystals are known to form blue phases-liquid states of matter that exhibit ordered cubic arrangements of topological defects. Blue-phase specimens, however, are generally polycrystalline, consisting of randomly oriented domains that limit their performance in applications. A strategy that relies on nano-patterned substrates is presented here for preparation of stable, macroscopic single-crystal blue-phase materials. Different template designs are conceived to exert control over different planes of the blue-phase lattice orientation with respect to the underlying substrate. Experiments are then used to demonstrate that it is indeed possible to create stable single-crystal blue-phase domains with the desired orientation over large regions. These results provide a potential avenue to fully exploit the electro-optical properties of blue phases, which have been hindered by the existence of grain boundaries.


Factors associated with physical activity in elderly nursing home residents: a path analysis.

  • Jingxin Huang‎ et al.
  • BMC geriatrics‎
  • 2020‎

Physical activity (PA) is low among elderly residents in nursing homes in China. We aimed to determine the factors that influence PA among elderly nursing home residents and their direct or indirect effects on PA levels.


Curcumol Overcomes TRAIL Resistance of Non-Small Cell Lung Cancer by Targeting NRH:Quinone Oxidoreductase 2 (NQO2).

  • Jing Zhang‎ et al.
  • Advanced science (Weinheim, Baden-Wurttemberg, Germany)‎
  • 2020‎

Resistance to tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL) of cancer cell remains a key obstacle for clinical cancer therapies. To overcome TRAIL resistance, this study identifies curcumol as a novel safe sensitizer from a food-source compound library, which exhibits synergistic lethal effects in combination with TRAIL on non-small cell lung cancer (NSCLC). SILAC-based cellular thermal shift profiling identifies NRH:quinone oxidoreductase 2 (NQO2) as the key target of curcumol. Mechanistically, curcumol directly targets NQO2 to cause reactive oxygen species (ROS) generation, which triggers endoplasmic reticulum (ER) stress-C/EBP homologous protein (CHOP) death receptor (DR5) signaling, sensitizing NSCLC cell to TRAIL-induced apoptosis. Molecular docking analysis and surface plasmon resonance assay demonstrate that Phe178 in NQO2 is a critical site for curcumol binding. Mutation of Phe178 completely abolishes the function of NQO2 and augments the TRAIL sensitization. This study characterizes the functional role of NQO2 in TRAIL resistance and the sensitizing function of curcumol by directly targeting NQO2, highlighting the potential of using curcumol as an NQO2 inhibitor for clinical treatment of TRAIL-resistant cancers.


Directed Evolution of Pseudomonas fluorescens Lipase Variants With Improved Thermostability Using Error-Prone PCR.

  • Lijun Guan‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2020‎

Lipases catalyze the hydrolysis of fats and oils, and have been widely used in various industrial fields. However, bacterial lipases have a lower thermostability in industrial processes, which was a limiting factor in their industrial application. In this study, we obtained an improve variant of Pseudomonas fluorescens lipase (PFL) with enhanced thermostability using classical error-prone PCR. Wild-type PFL showed an optimal temperature and pH of 50°C and pH 7.5, respectively. Due to the low thermostability of PFL, a library containing over 3000 individual mutants as constructed using error-prone PCR. Screening for thermotolerance yielded the mutants L218P and P184C/M243C with Tm values of 62.5 and 66.0°C, which was 2.5 and 6°C higher than that of the WT, respectively. The combination of the two mutants (P184C/M243C/L218P) resulted in an approximately additive effect with a Tm value of 68.0°C. Although the increase of Tm was not substantial, the mutant also had dramatically increased methanol tolerance. Structural analysis revealed that the introduction of a disulfide bond between P184C and M243C and the substitution of Pro to reduce the flexibility of a loop increased the thermostability of PFL, which provides a theoretical foundation for improving the thermostability and methanol tolerance of lipase family I.1 to resist the harsh conditions of industrial processes.


Hyperbaric oxygen therapy reduces apoptosis and dendritic/synaptic degeneration via the BDNF/TrkB signaling pathways in SCI rats.

  • Xinwang Ying‎ et al.
  • Life sciences‎
  • 2019‎

Spinal cord injury (SCI) is a serious neurological disease without efficacious drugs. Anti-apoptosis and suppressing dendritic/synaptic degeneration in the anterior horn are essential targets after SCI. Previous studies found that hyperbaric oxygen therapy (HBOT) significantly protected rats after SCI. However, its potential effects and mechanisms remain unknown. The BDNF/TrkB signaling pathways evidently contribute to the SCI recovery. Currently, we mainly investigate the potential effects and mechanism of HBOT on anti-apoptosis and ameliorating impaired dendrites, dendritic spines and synapses after SCI. Establish SCI model and randomly divide rats into 5 groups. After SCI, rats were subjected to HBOT. ANA-12 is the specific inhibitor of BDNF/TrkB signal pathway. Changes in neurological deficit, neuronal morphology, apoptosis, protein expression and dendrite/synapse were examined by Basso-Beattie-Bresnahan (BBB) locomotor rating scale, Hematoxylin-eosin (HE) and Nissl staining, TUNEL staining, RT-PCR, Western blot, immunofluorescence and Golgi-Cox staining. We found HBOT suppressed dendritic/synaptic degeneration and alleviated apoptosis, consistent with the increase of BDNF and TrkB expression and improved neurological recovery. In contrast to the positive effects of HBOT, inhibitor increased degeneration and apoptosis. Moreover, we observed that these HBOT-mediated protective effects were significantly inhibited by inhibitor, consistent with the lower expression of BDNF/TrkB and worse neurobehavioral state. These findings suggest that hyperbaric oxygen therapy ameliorates spinal cord injury-induced neurological impairment by anti-apoptosis and suppressing dendritic/synaptic degeneration via upregulating the BDNF/TrkB signaling pathways.


Tissue Levels of Flurbiprofen in the Rat Plantar Heel after Short-Duration Topical Iontophoresis are Sufficient to Induce Pharmacodynamic Responses to Local Pain Stimuli.

  • Yilu Cai‎ et al.
  • Pharmaceutics‎
  • 2020‎

The objective of this study was to investigate the topical iontophoresis of flurbiprofen (FBF) as a means to enhance its local bioavailability and thereby provide an improved and targeted treatment of plantar heel pain. Initial in vitro experiments using porcine ear skin investigated iontophoretic transport of FBF under different conditions. Local FBF biodistribution in the rat paw in vivo was compared after topical or oral administration. Efficacy of pain management was investigated using a plantar incisional model by evaluating pharmacodynamic responses to local pain stimuli. The results demonstrated that iontophoresis of FBF significantly increased cutaneous deposition and transdermal permeation of FBF as compared to passive delivery-it also enabled drug input to be controlled by modulation of current density and drug concentration (r2 > 0.99). Topical iontophoresis of FBF in vivo enabled higher drug levels in skin and muscle in rat plantar aspect and superior pharmacodynamic responses to local pain stimuli, in comparison to oral and passive delivery. In conclusion, short-duration topical iontophoresis of FBF may better help to relieve plantar heel pain than oral or passive administration, which should be of clinical interest.


Identification of MDM2, YTHDF2 and DDX21 as potential biomarkers and targets for treatment of type 2 diabetes.

  • Junyi Zheng‎ et al.
  • Biochemical and biophysical research communications‎
  • 2021‎

Type 2 diabetes (T2D) is a multifactorial and polygenetic disease, although its exact etiology remains poorly understood. The objective of this study was to identify key biomarkers and potential molecular mechanisms in the development of T2D. Human RNA-Seq datasets across different tissues (GSE18732, GSE41762, and GSE78721) were collected from the Gene Expression Omnibus (GEO) database and differentially expressed genes (DEGs) between T2D and controls were identified using differential analysis. A total of 90 overlapping DEGs were identified, among which YTHDF2, DDX21, and MDM2 were considered as key genes due to their central positions in the PPI network and the same regulatory pattern in T2D. Logistic regression analysis showed that low expression of the key genes increased the risk of T2D. Enrichment analysis revealed that the key genes are involved in various important biological functions and signaling pathways including Notch, Fork head box O (FOXO), and phosphoinositide 3-kinase (PI3K)-Akt. RT-qPCR and Western blot analysis showed that all three key genes were down-regulated in pancreatic islets of both prediabetic and diabetic mouse models. Finally, the insulin-sensitizer, pioglitazone was used to treat db/db mice and immunofluorescence analysis showed that the expression of all three key genes was significantly down-regulated in db/db islets, an effect that was overcome by pioglitazone treatment. Together, these results suggest that the identified key genes could be involved in the development of T2D and serve as potential biomarkers and therapeutic targets for this disease.


Single-cell RNA transcriptome landscape of hepatocytes and non-parenchymal cells in healthy and NAFLD mouse liver.

  • Qi Su‎ et al.
  • iScience‎
  • 2021‎

Nonalcoholic fatty liver disease (NAFLD) is a global health-care problem with limited therapeutic options. To obtain a cellular resolution of pathogenesis, 82,168 single-cell transcriptomes (scRNA-seq) across different NAFLD stages were profiled, identifying hepatocytes and 12 other non-parenchymal cell (NPC) types. scRNA-seq revealed insights into the cellular and molecular mechanisms of the disease. We discovered a dual role for hepatic stellate cells in gene expression regulation and in the potential to trans-differentiate into myofibroblasts. We uncovered distinct expression profiles of Kupffer cells versus monocyte-derived macrophages during NAFLD progression. Kupffer cells showed stronger immune responses, while monocyte-derived macrophages demonstrated a capability for differentiation. Three chimeric NPCs were identified including endothelial-chimeric stellate cells, hepatocyte-chimeric endothelial cells, and endothelial-chimeric Kupffer cells. Our work identified unanticipated aspects of mouse with NAFLD at the single-cell level and advanced the understanding of cellular heterogeneity in NAFLD livers.


Comparison of nephroscopy and cystoscopy used in the treatment of bladder stones: a systematic review and meta-analysis of randomized controlled trials.

  • Liping Gou‎ et al.
  • BMC surgery‎
  • 2021‎

A systematic review and meta-analysis was conducted to compare the safety and efficiency of nephroscopy and cystoscopy in transurethral cystolithotripsy (TUCL) for bladder stones (BS).


Biochemical and Structural Characterization of a Novel Bacterial Tannase From Lachnospiraceae bacterium in Ruminant Gastrointestinal Tract.

  • Lijun Guan‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2021‎

Tannases are a family of esterases that catalyze the hydrolysis of ester and depside bonds present in hydrolyzable tannins to release gallic acid. Here, a novel tannase from Lachnospiraceae bacterium (TanALb) was characterized. The recombinant TanALb exhibited maximal activity at pH 7.0 and 50°C, and it maintained more than 70% relative activity from 30°C to 55°C. The activity of TanALb was enhanced by Mg2+ and Ca2+, and was dramatically reduced by Cu2+ and Mn2+. TanALb is capable of degrading esters of phenolic acids with long-chain alcohols, such as lauryl gallate as well as tannic acid. The Km value and catalytic efficiency (k cat /Km) of TanALb toward five substrates showed that tannic acid (TA) was the favorite substrate. Homology modeling and structural analysis indicated that TanALb contains an insertion loop (residues 341-450). Based on the moleculer docking and molecular dynamics (MD) simulation, this loop was observed as a flap-like lid to interact with bulk substrates such as tannic acid. TanALb is a novel bacterial tannase, and the characteristics of this enzyme make it potentially interesting for industrial use.


Fast In Vitro Release and In Vivo Absorption of an Anti-Schizophrenic Drug Paliperidone from Its Soluplus®/TPGS Mixed Micelles.

  • Ye Zhou‎ et al.
  • Pharmaceutics‎
  • 2022‎

The purpose of this study was to develop a drug delivery system for paliperidone (PPD) in order to provide a more effective therapeutic strategy for patients with acute schizophrenia. PPD-loaded Soluplus®/TPGS mixed micelles (PPD-S/T-MM) were prepared using the thin-film hydration method. The critical micelle concentration (CMC) of blank S/T-MM was 4.77 × 10-2 mg/mL. PPD presented much higher solubility in PPD-S/T-MM formulation than that in pure water. The particle size of blank or drug loaded S/T-MM was around 60 nm. The polydispersity index (PDI) was less than 0.1. PPD-S/T-MM presented a nearly spherical shape under transmission electron microscopy. The encapsulation efficiency (EE%) of PPD-S/T-MM was higher than 94%. Based on the analysis of XRD and DSC, it was proved that PPD was incorporated in the core of the mixed micelles as amorphous dispersion or solid solution. PPD-S/T-MM were stable when they were undergoing dilution with water and the change of environmental pH. Although PPD-S/T-MM showed lower rates to release PPD than those from PPD raw material in acidic solution, they provided faster release rates in neutral conditions than those from PPD raw material who only showed modest dissolution in the same neutral condition. This proves that PPD-S/T-MM can release PPD in a more controlled manner. After oral administration of PPD-S/T-MM (dose of PPD, 6 mg/kg) in rats, the plasma concentration of PPD increased rapidly: Tmax was 0.83 ± 0.29 h, and Cmax was 844.33 ± 93.73 ng/mL. Oral administration of PPD suspension resulted in longer Tmax and lower Cmax. The relative oral bioavailability was about 158% for PPD-S/T-MM over PPD suspension. These findings confirm that PPD-S/T-MM can provide faster release in neutral conditions and better oral absorption in rats than those from PPD raw material, which should potentially benefit patients with acute schizophrenia.


Superanionic Solvent-Free Liquid Enzymes Exhibit Enhanced Structures and Activities.

  • Ye Zhou‎ et al.
  • Advanced science (Weinheim, Baden-Wurttemberg, Germany)‎
  • 2022‎

The surface of a carboxylate-enriched octuple mutant of Bacillus subtilis lipase A (8M) is chemically anionized to produce core (8M)-shell (cationic polymer surfactants) bionanoconjugates in protein liquid form, which are termed anion-type biofluids. The resultant lipase biofluids exhibit a 2.5-fold increase in hydrolytic activity when compared with analogous lipase biofluids based on anionic polymer surfactants. In addition, the applicability of the anion-type biofluid using Myoglobin (Mb) that is well studied in anion-type solvent-free liquid proteins is evaluated. Although anionization resulted in the complete unfolding of Mb, the active α-helix level is partially recovered in the anion-type biofluids, and the effect is accentuated in the cation-type Mb biofluids. These highly active anion-type solvent-free liquid enzymes exhibit increased thermal stability and provide a new direction in solvent-free liquid protein research.


The combination of a 3D-Printed porous Ti-6Al-4V alloy scaffold and stem cell sheet technology for the construction of biomimetic engineered bone at an ectopic site.

  • Zhifa Wang‎ et al.
  • Materials today. Bio‎
  • 2022‎

Cell sheet technology has been widely used in bone tissue engineering and regenerative medicine. However, controlling the shape and volume of large pieces of engineered bone tissue remains impossible without additional suitable scaffolds. Three-dimensional (3D) printed titanium (Ti) alloy scaffolds are mostly used as implant materials for repairing bone defects, but the unsatisfactory bioactivities of traditional Ti-based scaffolds severely limit their clinical applications. Herein, we hypothesize that the combination of bone marrow mesenchymal stem cell (BMSC) sheet technology and 3D porous Ti-6Al-4V (PT) alloy scaffolds could be used to fabricate biomimetic engineered bone. First, various concentrations of BMSCs were directly cocultured with PT scaffolds to obtain complexes of osteoblastic cell sheets and scaffolds. Then, as an experimental control, an osteoblastic BMSC sheet was prepared by continuous culturing under osteogenic conditions for 2 weeks without passaging and used to wrap the scaffolds. The BMSC sheet was composed of several layers of extracellular matrix (ECM) and a mass of BMSCs. The BMSCs exhibited excellent adherent, proliferative and osteogenic potential when cocultured with PT scaffolds, which may be attributed to the ability of the 3D microstructure of scaffolds to facilitate the biological behaviors of cells, as confirmed by the in vitro results. Moreover, the presence of BMSCs and ECM increased the angiogenic potential of PT scaffolds by the secretion of VEGF. Micro-CT and histological analysis confirmed the in vivo formation of biomimetic engineered bone when the complex of cocultured BMSCs and PT scaffolds and the scaffolds wrapped by prepared BMSC sheets were implanted subcutaneously into nude mice. Therefore, the combination of BMSC sheet technology and 3D-printed PT scaffolds could be used to construct customized biomimetic engineered bone, offering a novel and promising strategy for the precise repair of bone defects.


PRR34-AS1 promotes exosome secretion of VEGF and TGF-β via recruiting DDX3X to stabilize Rab27a mRNA in hepatocellular carcinoma.

  • Zhilei Zhang‎ et al.
  • Journal of translational medicine‎
  • 2022‎

Exosomes are deemed to be an important tool of intercellular communicators in cancer cells. Our study investigated the role of PRR34 long non-coding RNA antisense RNA 1 (PRR34-AS1) in regulating exosome secretion in hepatocellular carcinoma (HCC) cells.


Structural basis for breadth development in the HIV-1 V3-glycan targeting DH270 antibody clonal lineage.

  • Rory Henderson‎ et al.
  • Nature communications‎
  • 2023‎

Antibody affinity maturation enables adaptive immune responses to a wide range of pathogens. In some individuals broadly neutralizing antibodies develop to recognize rapidly mutating pathogens with extensive sequence diversity. Vaccine design for pathogens such as HIV-1 and influenza has therefore focused on recapitulating the natural affinity maturation process. Here, we determine structures of antibodies in complex with HIV-1 Envelope for all observed members and ancestral states of the broadly neutralizing HIV-1 V3-glycan targeting DH270 antibody clonal B cell lineage. These structures track the development of neutralization breadth from the unmutated common ancestor and define affinity maturation at high spatial resolution. By elucidating contacts mediated by key mutations at different stages of antibody development we identified sites on the epitope-paratope interface that are the focus of affinity optimization. Thus, our results identify bottlenecks on the path to natural affinity maturation and reveal solutions for these that will inform immunogen design aimed at eliciting a broadly neutralizing immune response by vaccination.


Molecular architecture and conservation of an immature human endogenous retrovirus.

  • Anna-Sophia Krebs‎ et al.
  • Nature communications‎
  • 2023‎

The human endogenous retrovirus K (HERV-K) is the most recently acquired endogenous retrovirus in the human genome and is activated and expressed in many cancers and amyotrophic lateral sclerosis. We present the immature HERV-K capsid structure at 3.2 Å resolution determined from native virus-like particles using cryo-electron tomography and subtomogram averaging. The structure shows a hexamer unit oligomerized through a 6-helix bundle, which is stabilized by a small molecule analogous to IP6 in immature HIV-1 capsid. The HERV-K immature lattice is assembled via highly conserved dimer and trimer interfaces, as detailed through all-atom molecular dynamics simulations and supported by mutational studies. A large conformational change mediated by the linker between the N-terminal and the C-terminal domains of CA occurs during HERV-K maturation. Comparison between HERV-K and other retroviral immature capsid structures reveals a highly conserved mechanism for the assembly and maturation of retroviruses across genera and evolutionary time.


PDK1-mTOR signaling pathway inhibitors reduce cell proliferation in MK2206 resistant neuroblastoma cells.

  • Lei Qi‎ et al.
  • Cancer cell international‎
  • 2015‎

AKT plays a pivotal role in the signal transduction of cancer cells. MK2206, an AKT inhibitor, has been shown to be an effective anti-cancer drug to a variety of cancer cell lines. However, some cancer cells acquire resistance to MK2206 and new strategies to suppress these cell lines remain to be developed.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: