Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 43 papers

Prior Anticoagulation and Short- or Long-Term Clinical Outcomes in Ischemic Stroke or Transient Ischemic Attack Patients With Nonvalvular Atrial Fibrillation.

  • Keisuke Tokunaga‎ et al.
  • Journal of the American Heart Association‎
  • 2019‎

Background We aimed to clarify associations between prior anticoagulation and short- or long-term clinical outcomes in ischemic stroke or transient ischemic attack patients with nonvalvular atrial fibrillation. Methods and Results A total of 1189 ischemic stroke or transient ischemic attack patients with nonvalvular atrial fibrillation who were hospitalized within 7 days after onset were analyzed. Of these, 813 patients (68.4%) received no prior anticoagulation, 310 (26.1%) received prior warfarin treatment with an international normalized ratio ( INR ) <2 on admission, 28 (2.4%) received prior warfarin treatment with an INR ≥2 on admission, and the remaining 38 (3.2%) received prior direct oral anticoagulant treatment. Prior warfarin treatment was associated with a lower risk of death or disability at 3 months compared with no prior anticoagulation ( INR <2: adjusted odds ratio: 0.58; 95% CI, 0.42-0.81; P=0.001; INR ≥2: adjusted odds ratio: 0.40; 95% CI, 0.16-0.97; P=0.043) but was not associated with a lower risk of death or disability at 2 years. Prior warfarin treatment with an INR ≥2 on admission was associated with a higher risk of ischemic events within 2 years compared with no prior anticoagulation (adjusted hazard ratio: 2.94; 95% CI, 1.20-6.15; P=0.021). Conclusions Prior warfarin treatment was associated with a lower risk of death or disability at 3 months but was not associated with a lower risk of death or disability at 2 years in ischemic stroke or transient ischemic attack patients with nonvalvular atrial fibrillation. Prior warfarin treatment with an INR ≥2 on admission was associated with a higher risk of ischemic events within 2 years. Clinical Trial Registration URL : http://www.clinicaltrials.gov . Unique identifier: NCT 01581502.


Single cell analysis reveals a biophysical aspect of collective cell-state transition in embryonic stem cell differentiation.

  • Kazuko Okamoto‎ et al.
  • Scientific reports‎
  • 2018‎

In the stem cell research field, the molecular regulatory network used to define cellular states has been extensively studied, however, the general driving force guiding the collective state dynamics remains to be identified from biophysical aspects. Here we monitored the time-development of the cell-state transition at the single-cell and colony levels, simultaneously, during the early differentiation process in mouse embryonic stem cells. Our quantitative analyses revealed that cellular heterogeneity was a result of spontaneous fluctuation of cellular state and cell-cell cooperativity. We considered that the cell state is like a ball fluctuating on a potential landscape, and found that the cooperativity affects the fluctuation. Importantly, the cooperativity temporarily decreased and increased in the intermediate state of cell differentiation, leading to cell-state transition in unison. This process can be explained using the mathematical equation of flashing-ratchet behaviour, which suggests that a general mechanism is driving the collective decision-making of stem cells.


Suppression of Vps13 adaptor protein mutants reveals a central role for PI4P in regulating prospore membrane extension.

  • Tsuyoshi S Nakamura‎ et al.
  • PLoS genetics‎
  • 2021‎

Vps13 family proteins are proposed to function in bulk lipid transfer between membranes, but little is known about their regulation. During sporulation of Saccharomyces cerevisiae, Vps13 localizes to the prospore membrane (PSM) via the Spo71-Spo73 adaptor complex. We previously reported that loss of any of these proteins causes PSM extension and subsequent sporulation defects, yet their precise function remains unclear. Here, we performed a genetic screen and identified genes coding for a fragment of phosphatidylinositol (PI) 4-kinase catalytic subunit and PI 4-kinase noncatalytic subunit as multicopy suppressors of spo73Δ. Further genetic and cytological analyses revealed that lowering PI4P levels in the PSM rescues the spo73Δ defects. Furthermore, overexpression of VPS13 and lowering PI4P levels synergistically rescued the defect of a spo71Δ spo73Δ double mutant, suggesting that PI4P might regulate Vps13 function. In addition, we show that an N-terminal fragment of Vps13 has affinity for the endoplasmic reticulum (ER), and ER-plasma membrane (PM) tethers localize along the PSM in a manner dependent on Vps13 and the adaptor complex. These observations suggest that Vps13 and the adaptor complex recruit ER-PM tethers to ER-PSM contact sites. Our analysis revealed that involvement of a phosphoinositide, PI4P, in regulation of Vps13, and also suggest that distinct contact site proteins function cooperatively to promote de novo membrane formation.


A highly photostable and bright green fluorescent protein.

  • Masahiko Hirano‎ et al.
  • Nature biotechnology‎
  • 2022‎

The low photostability of fluorescent proteins is a limiting factor in many applications of fluorescence microscopy. Here we present StayGold, a green fluorescent protein (GFP) derived from the jellyfish Cytaeis uchidae. StayGold is over one order of magnitude more photostable than any currently available fluorescent protein and has a cellular brightness similar to mNeonGreen. We used StayGold to image the dynamics of the endoplasmic reticulum (ER) with high spatiotemporal resolution over several minutes using structured illumination microscopy (SIM) and observed substantially less photobleaching than with a GFP variant optimized for stability in the ER. Using StayGold fusions and SIM, we also imaged the dynamics of mitochondrial fusion and fission and mapped the viral spike proteins in fixed cells infected with severe acute respiratory syndrome coronavirus 2. As StayGold is a dimer, we created a tandem dimer version that allowed us to observe the dynamics of microtubules and the excitatory post-synaptic density in neurons. StayGold will substantially reduce the limitations imposed by photobleaching, especially in live cell or volumetric imaging.


The function of Scox in glial cells is essential for locomotive ability in Drosophila.

  • Ryosuke Kowada‎ et al.
  • Scientific reports‎
  • 2021‎

Synthesis of cytochrome c oxidase (Scox) is a Drosophila homolog of human SCO2 encoding a metallochaperone that transports copper to cytochrome c, and is an essential protein for the assembly of cytochrome c oxidase in the mitochondrial respiratory chain complex. SCO2 is highly conserved in a wide variety of species across prokaryotes and eukaryotes, and mutations in SCO2 are known to cause mitochondrial diseases such as fatal infantile cardioencephalomyopathy, Leigh syndrome, and Charcot-Marie-Tooth disease, a neurodegenerative disorder. These diseases have a common symptom of locomotive dysfunction. However, the mechanisms of their pathogenesis remain unknown, and no fundamental medications or therapies have been established for these diseases. In this study, we demonstrated that the glial cell-specific knockdown of Scox perturbs the mitochondrial morphology and function, and locomotive behavior in Drosophila. In addition, the morphology and function of synapses were impaired in the glial cell-specific Scox knockdown. Furthermore, Scox knockdown in ensheathing glia, one type of glial cell in Drosophila, resulted in larval and adult locomotive dysfunction. This study suggests that the impairment of Scox in glial cells in the Drosophila CNS mimics the pathological phenotypes observed by mutations in the SCO2 gene in humans.


Condensed but liquid-like domain organization of active chromatin regions in living human cells.

  • Tadasu Nozaki‎ et al.
  • Science advances‎
  • 2023‎

In eukaryotes, higher-order chromatin organization is spatiotemporally regulated as domains, for various cellular functions. However, their physical nature in living cells remains unclear (e.g., condensed domains or extended fiber loops; liquid-like or solid-like). Using novel approaches combining genomics, single-nucleosome imaging, and computational modeling, we investigated the physical organization and behavior of early DNA replicated regions in human cells, which correspond to Hi-C contact domains with active chromatin marks. Motion correlation analysis of two neighbor nucleosomes shows that nucleosomes form physically condensed domains with ~150-nm diameters, even in active chromatin regions. The mean-square displacement analysis between two neighbor nucleosomes demonstrates that nucleosomes behave like a liquid in the condensed domain on the ~150 nm/~0.5 s spatiotemporal scale, which facilitates chromatin accessibility. Beyond the micrometers/minutes scale, chromatin seems solid-like, which may contribute to maintaining genome integrity. Our study reveals the viscoelastic principle of the chromatin polymer; chromatin is locally dynamic and reactive but globally stable.


Neuron-specific knockdown of Drosophila HADHB induces a shortened lifespan, deficient locomotive ability, abnormal motor neuron terminal morphology and learning disability.

  • Jialin Li‎ et al.
  • Experimental cell research‎
  • 2019‎

Mutations in the HADHB gene induce dysfunctions in the beta-oxidation of fatty acids and result in a MTP deficiency, which is characterized by clinical heterogeneity, such as cardiomyopathy and recurrent Leigh-like encephalopathy. In contrast, milder forms of HADHB mutations cause the later onset of progressive axonal peripheral neuropathy (approximately 50-80%) and myopathy with or without episodic myoglobinuria. The mechanisms linking neuronal defects in these diseases to the loss of HADHB function currently remain unclear. Drosophila has the CG4581 (dHADHB) gene as a single human HADHB homologue. We herein established pan-neuron-specific dHADHB knockdown flies and examined their phenotypes. The knockdown of dHADHB shortened the lifespan of flies, reduced locomotor ability and also limited learning abilities. These phenotypes were accompanied by an abnormal synapse morphology at neuromuscular junctions (NMJ) and reduction in both ATP and ROS levels in central nervous system (CNS). The Drosophila NMJ synapses are glutamatergic that is similar to those in the vertebrate CNS. The present results reveal a critical role for dHADHB in the morphogenesis and function of glutamatergic neurons including peripheral neurons. The dHADHB knockdown flies established herein provide a useful model for investigating the pathological mechanisms underlying neuropathies caused by a HADHB deficiency.


Kinesin-binding-triggered conformation switching of microtubules contributes to polarized transport.

  • Tomohiro Shima‎ et al.
  • The Journal of cell biology‎
  • 2018‎

Kinesin-1, the founding member of the kinesin superfamily of proteins, is known to use only a subset of microtubules for transport in living cells. This biased use of microtubules is proposed as the guidance cue for polarized transport in neurons, but the underlying mechanisms are still poorly understood. Here, we report that kinesin-1 binding changes the microtubule lattice and promotes further kinesin-1 binding. This high-affinity state requires the binding of kinesin-1 in the nucleotide-free state. Microtubules return to the initial low-affinity state by washing out the binding kinesin-1 or by the binding of non-hydrolyzable ATP analogue AMPPNP to kinesin-1. X-ray fiber diffraction, fluorescence speckle microscopy, and second-harmonic generation microscopy, as well as cryo-EM, collectively demonstrated that the binding of nucleotide-free kinesin-1 to GDP microtubules changes the conformation of the GDP microtubule to a conformation resembling the GTP microtubule.


Quantitative analysis of APP axonal transport in neurons: role of JIP1 in enhanced APP anterograde transport.

  • Kyoko Chiba‎ et al.
  • Molecular biology of the cell‎
  • 2014‎

Alzheimer's β-amyloid precursor protein (APP) associates with kinesin-1 via JNK-interacting protein 1 (JIP1); however, the role of JIP1 in APP transport by kinesin-1 in neurons remains unclear. We performed a quantitative analysis to understand the role of JIP1 in APP axonal transport. In JIP1-deficient neurons, we find that both the fast velocity (∼2.7 μm/s) and high frequency (66%) of anterograde transport of APP cargo are impaired to a reduced velocity (∼1.83 μm/s) and a lower frequency (45%). We identified two novel elements linked to JIP1 function, located in the central region of JIP1b, that interact with the coiled-coil domain of kinesin light chain 1 (KLC1), in addition to the conventional interaction of the JIP1b 11-amino acid C-terminal (C11) region with the tetratricopeptide repeat of KLC1. High frequency of APP anterograde transport is dependent on one of the novel elements in JIP1b. Fast velocity of APP cargo transport requires the C11 domain, which is regulated by the second novel region of JIP1b. Furthermore, efficient APP axonal transport is not influenced by phosphorylation of APP at Thr-668, a site known to be phosphorylated by JNK. Our quantitative analysis indicates that enhanced fast-velocity and efficient high-frequency APP anterograde transport observed in neurons are mediated by novel roles of JIP1b.


Improvement and Aggravation of Spontaneous Unruptured Vertebral Artery Dissection.

  • Tomoya Shibahara‎ et al.
  • Cerebrovascular diseases extra‎
  • 2017‎

Intracranial vertebral artery dissection (VAD) is a well-recognized cause of stroke in young and middle-aged individuals, especially in Asian populations. However, a long-term natural course remains unclear. We investigated the long-term time course of VAD using imaging findings to examine the rate and predisposing factors for improvement.


Endovascular Therapy in Ischemic Stroke With Acute Large-Vessel Occlusion: Recovery by Endovascular Salvage for Cerebral Ultra-Acute Embolism Japan Registry 2.

  • Shinichi Yoshimura‎ et al.
  • Journal of the American Heart Association‎
  • 2018‎

Endovascular therapy has been shown to be effective in patients with acute cerebral large-vessel occlusion, but real-world efficacies are unknown.


Atrial Fibrillation After Ischemic Stroke Detected by Chest Strap-Style 7-Day Holter Monitoring and the Risk Predictors: EDUCATE-ESUS.

  • Yuichi Miyazaki‎ et al.
  • Journal of atherosclerosis and thrombosis‎
  • 2021‎

This study aimed to investigate the diagnostic yield of 7-day Holter monitoring for detecting covert atrial fibrillation (AF) in patients with recent embolic stroke of undetermined source (ESUS) and to identify the pre-entry screening biomarkers that had significant associations with later detection of AF (clinicaltrials.gov. NCT02801708).


Dual Antiplatelet Therapy Using Cilostazol With Aspirin or Clopidogrel: Subanalysis of the CSPS.com Trial.

  • Haruhiko Hoshino‎ et al.
  • Stroke‎
  • 2021‎

Although dual antiplatelet therapy (DAPT) with aspirin and clopidogrel reduces the recurrence of ischemic stroke while significantly increasing the bleeding events compared with monotherapy, the CSPS.com trial (Cilostazol Stroke Prevention Study combination) showed that DAPT using cilostazol was more effective without the bleeding risk. In the CSPS.com trial, aspirin or clopidogrel was used as the underlying antiplatelet drug. The effectiveness and safety of each combination were examined and clarified.


The mitochondrial intermembrane space protein mitofissin drives mitochondrial fission required for mitophagy.

  • Tomoyuki Fukuda‎ et al.
  • Molecular cell‎
  • 2023‎

Mitophagy plays an important role in mitochondrial homeostasis by selective degradation of mitochondria. During mitophagy, mitochondria should be fragmented to allow engulfment within autophagosomes, whose capacity is exceeded by the typical mitochondria mass. However, the known mitochondrial fission factors, dynamin-related proteins Dnm1 in yeasts and DNM1L/Drp1 in mammals, are dispensable for mitophagy. Here, we identify Atg44 as a mitochondrial fission factor that is essential for mitophagy in yeasts, and we therefore term Atg44 and its orthologous proteins mitofissin. In mitofissin-deficient cells, a part of the mitochondria is recognized by the mitophagy machinery as cargo but cannot be enwrapped by the autophagosome precursor, the phagophore, due to a lack of mitochondrial fission. Furthermore, we show that mitofissin directly binds to lipid membranes and brings about lipid membrane fragility to facilitate membrane fission. Taken together, we propose that mitofissin acts directly on lipid membranes to drive mitochondrial fission required for mitophagy.


Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics.

  • Shinichi Hayashi‎ et al.
  • Molecular biology of the cell‎
  • 2015‎

Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro-tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30-100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging.


Environmental risk assessment and concentration trend of atmospheric volatile organic compounds in Hyogo Prefecture, Japan.

  • Yasushi Okada‎ et al.
  • Environmental science and pollution research international‎
  • 2012‎

The purpose of this study was to evaluate the influences of volatile organic compounds (VOCs) emissions on hazardousness and photochemical reactivity and to propose efficient VOCs abatement strategies.


High-Dose Versus Low-Dose Pitavastatin in Japanese Patients With Stable Coronary Artery Disease (REAL-CAD): A Randomized Superiority Trial.

  • Isao Taguchi‎ et al.
  • Circulation‎
  • 2018‎

Current guidelines call for high-intensity statin therapy in patients with cardiovascular disease on the basis of several previous "more versus less statins" trials. However, no clear evidence for more versus less statins has been established in an Asian population.


Quantitative assay for TALEN activity at endogenous genomic loci.

  • Yu Hisano‎ et al.
  • Biology open‎
  • 2013‎

Artificially designed nucleases such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) can induce a targeted DNA double-strand break at the specific target genomic locus, leading to the frameshift-mediated gene disruption. However, the assays for their activity on the endogenous genomic loci remain limited. Herein, we describe a versatile modified lacZ assay to detect frameshifts in the nuclease target site. Short fragments of the genome DNA at the target or putative off-target loci were amplified from the genomic DNA of TALEN-treated or control embryos, and were inserted into the lacZα sequence for the conventional blue-white selection. The frequency of the frameshifts in the fragment can be estimated from the numbers of blue and white colonies. Insertions and/or deletions were easily determined by sequencing the plasmid DNAs recovered from the positive colonies. Our technique should offer broad application to the artificial nucleases for genome editing in various types of model organisms.


Thrombolysis With Alteplase at 0.6 mg/kg for Stroke With Unknown Time of Onset: A Randomized Controlled Trial.

  • Masatoshi Koga‎ et al.
  • Stroke‎
  • 2020‎

Background and Purpose- We assessed whether lower-dose alteplase at 0.6 mg/kg is efficacious and safe for acute fluid-attenuated inversion recovery-negative stroke with unknown time of onset. Methods- This was an investigator-initiated, multicenter, randomized, open-label, blinded-end point trial. Patients met the standard indication criteria for intravenous thrombolysis other than a time last-known-well >4.5 hours (eg, wake-up stroke). Patients were randomly assigned (1:1) to receive alteplase at 0.6 mg/kg or standard medical treatment if magnetic resonance imaging showed acute ischemic lesion on diffusion-weighted imaging and no marked corresponding hyperintensity on fluid-attenuated inversion recovery. The primary outcome was a favorable outcome (90-day modified Rankin Scale score of 0-1). Results- Following the early stop and positive results of the WAKE-UP trial (Efficacy and Safety of MRI-Based Thrombolysis in Wake-Up Stroke), this trial was prematurely terminated with 131 of the anticipated 300 patients (55 women; mean age, 74.4±12.2 years). Favorable outcome was comparable between the alteplase group (32/68, 47.1%) and the control group (28/58, 48.3%; relative risk [RR], 0.97 [95% CI, 0.68-1.41]; P=0.892). Symptomatic intracranial hemorrhage within 22 to 36 hours occurred in 1/71 and 0/60 (RR, infinity [95% CI, 0.06 to infinity]; P>0.999), respectively. Death at 90 days occurred in 2/71 and 2/60 (RR, 0.85 [95% CI, 0.06-12.58]; P>0.999), respectively. Conclusions- No difference in favorable outcome was seen between alteplase and control groups among patients with ischemic stroke with unknown time of onset. The safety of alteplase at 0.6 mg/kg was comparable to that of standard treatment. Early study termination precludes any definitive conclusions. Registration- URL: https://www.clinicaltrials.gov; Unique identifier: NCT02002325.


c-Src-mediated phosphorylation and activation of kinesin KIF1C promotes elongation of invadopodia in cancer cells.

  • Takeshi Saji‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

Invadopodia on cancer cells play crucial roles in tumor invasion and metastasis by degrading and remodeling the surrounding extracellular matrices and driving cell migration in complex 3D environments. Previous studies have indicated that microtubules (MTs) play a crucial role in elongation of invadopodia, but not their formation, probably by regulating delivery of membrane and secretory proteins within invadopodia. However, the identity of the responsible MT-based molecular motors and their regulation has been elusive. Here, we show that KIF1C, a member of kinesin-3 family, is localized to the tips of invadopodia and is required for their elongation and the invasion of cancer cells. We also found that c-Src phosphorylates tyrosine residues within the stalk domain of KIF1C, thereby enhancing its association with tyrosine phosphatase PTPD1, that in turn activates MT-binding ability of KIF1C, probably by relieving the autoinhibitory interaction between its motor and stalk domains. These findings shed new insights into how c-Src signaling is coupled to the MT-dependent dynamic nature of invadopodia and also advance our understanding of the mechanism of KIF1C activation through release of its autoinhibition.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: