Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Characterization of the receptors for mycobacterial cord factor in Guinea pig.

  • Kenji Toyonaga‎ et al.
  • PloS one‎
  • 2014‎

Guinea pig is a widely used animal for research and development of tuberculosis vaccines, since its pathological disease process is similar to that present in humans. We have previously reported that two C-type lectin receptors, Mincle (macrophage inducible C-type lectin, also called Clec4e) and MCL (macrophage C-type lectin, also called Clec4d), recognize the mycobacterial cord factor, trehalose-6,6'-dimycolate (TDM). Here, we characterized the function of the guinea pig homologue of Mincle (gpMincle) and MCL (gpMCL). gpMincle directly bound to TDM and transduced an activating signal through ITAM-bearing adaptor molecule, FcRγ. Whereas, gpMCL lacked C-terminus and failed to bind to TDM. mRNA expression of gpMincle was detected in the spleen, lymph nodes and peritoneal macrophages and it was strongly up-regulated upon stimulation of zymosan and TDM. The surface expression of gpMincle was detected on activated macrophages by a newly established monoclonal antibody that also possesses a blocking activity. This antibody potently suppressed TNF production in BCG-infected macrophages. Collectively, gpMincle is the TDM receptor in the guinea pig and TDM-Mincle axis is involved in host immune responses against mycobacteria.


Apaf1 plays a negative regulatory role in T cell responses by suppressing activation of antigen-stimulated T cells.

  • Honglian Tong‎ et al.
  • PloS one‎
  • 2018‎

Apaf1 is a critical component of the apoptosome and initiates apoptosis downstream mitochondrial damages. Although the importance of Apaf1 in embryonic development was shown, the role of Apaf1 in immune responses, especially T cell responses, has yet to be elucidated. We generated T cell-specific Apaf1-deficient mice (Lck-Cre-Apaf1f/f mice) and examined the antigen-specific delayed-type hypersensitivity (DTH). Lck-Cre-Apaf1f/f mice exhibited exacerbation of DTH responses as compared with Apaf1-sufficient control mice. In Lck-Cre-Apaf1f/f mice, antigen-specific T cells proliferated more, and produced more inflammatory cytokines than control T cells. Apaf1-deficient T cells from antigen-immunized mice showed higher percentages of activation phenotypes upon restimulation in vitro. Apaf1-deficient T cells from naive (non-immunized) mice also showed higher proliferation activity and cytokine production over control cells. The impact of Apaf1-deficiency in T cells, however, was not restored by a pan-caspase inhibitor, suggesting that the role of Apaf1 in T cell responses was caspase-independent/non-apoptotic. These data collectively demonstrated that Apaf1 is a negative regulator of T cell responses and implicated Apaf1 as a potential target for immunosuppressive drug discovery.


α-Conidendrin inhibits the expression of intercellular adhesion molecule-1 induced by tumor necrosis factor-α in human lung adenocarcinoma A549 cells.

  • Nghia Trong Vo‎ et al.
  • European journal of pharmacology‎
  • 2021‎

α-Conidendrin is a lignan isolated from Taxus wallichiana and other species. In the present study, we demonstrated that α-conidendrin inhibited the cell-surface expression of intercellular adhesion molecule-1 (ICAM-1) induced by tumor necrosis factor-α (TNF-α) at an IC50 value of 40-60 μM in human lung adenocarcinoma A549 cells. α-Conidendrin decreased ICAM-1 protein and mRNA expression levels at concentrations of 40-100 μM in TNF-α-stimulated A549 cells. The TNF-α-induced mRNA expression of vascular cell adhesion molecule-1, E-selectin, and cyclooxygenase-2 was also reduced by α-conidendrin. In the TNF-α-induced nuclear factor κB (NF-κB) signaling pathway, α-conidendrin did not influence the translocation of the NF-κB subunit RelA from the cytoplasm to the nucleus at concentrations up to 100 μM. A chromatin immunoprecipitation assay revealed that α-conidendrin at 100 μM reduced the binding of RelA to the ICAM-1 promoter in response to a stimulation with TNF-α. Collectively, these results indicated that α-conidendrin interfered with the DNA binding of RelA to the ICAM-1 promoter, thereby reducing ICAM-1 transcription.


A Flow Cytometry Method for Dissecting the Cell Differentiation Process of Entamoeba Encystation.

  • Fumika Mi-Ichi‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2018‎

Amoebiasis is caused by Entamoeba histolytica infection, a protozoan parasite belonging to the phylum Amoebozoa. This parasite undergoes a fundamental cell differentiation process from proliferative trophozoite to dormant cyst, termed "encystation." The cysts formed by encystation are solely responsible for the transmission of amoebiasis; therefore, Entamoeba encystation is an important subject from both biological and medical perspectives. Here, we have established a flow cytometry strategy for not only determining the percentage of formed cysts but also for monitoring changes in cell populations during encystation. This strategy together with fluorescence microscopy enables visualization of the cell differentiation process of Entamoeba encystation. We also standardized another flow cytometry protocol for counting live trophozoites. These two different flow cytometry techniques could be integrated into 96-well plate-based bioassays for monitoring the processes of cyst formation and trophozoite proliferation, which are crucial to maintain the Entamoeba life cycle. The combined two systems enabled us to screen a chemical library, the Pathogen Box of the Medicine for Malaria Venture, to obtain compounds that inhibit either the formation of cysts or the proliferation of trophozoites, or both. This is a prerequisite for the development of new drugs against amoebiasis, a global public health problem. Collectively, the two different 96-well plate-based Entamoeba bioassay and flow cytometry analysis systems (cyst formation and trophozoite proliferation) provide a methodology that can not only overcome the limitations of standard microscopic counting but also is effective in applied as well as basic Entamoeba biology.


Cucurbitacin B Down-Regulates TNF Receptor 1 Expression and Inhibits the TNF-α-Dependent Nuclear Factor κB Signaling Pathway in Human Lung Adenocarcinoma A549 Cells.

  • Eiichi Kusagawa‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), induce the expression of intracellular adhesion molecule-1 (ICAM-1) by activating the nuclear factor κB (NF-κB) signaling pathway. In the present study, we found that cucurbitacin B decreased the expression of ICAM-1 in human lung adenocarcinoma A549 cells stimulated with TNF-α or interleukin-1α. We further investigated the mechanisms by which cucurbitacin B down-regulates TNF-α-induced ICAM-1 expression. Cucurbitacin B inhibited the nuclear translocation of the NF-κB subunit RelA and the phosphorylation of IκBα in A549 cells stimulated with TNF-α. Cucurbitacin B selectively down-regulated the expression of TNF receptor 1 (TNF-R1) without affecting three adaptor proteins (i.e., TRADD, RIPK1, and TRAF2). The TNF-α-converting enzyme inhibitor suppressed the down-regulation of TNF-R1 expression by cucurbitacin B. Glutathione, N-acetyl-L-cysteine, and, to a lesser extent, L-cysteine attenuated the inhibitory effects of cucurbitacin B on the TNF-α-induced expression of ICAM-1, suggesting that an α,β-unsaturated carbonyl moiety is essential for anti-inflammatory activity. The present results revealed that cucurbitacin B down-regulated the expression of TNF-R1 at the initial step in the TNF-α-dependent NF-κB signaling pathway.


Essential roles of C-type lectin Mincle in induction of neuropathic pain in mice.

  • Asako Ishikawa‎ et al.
  • Scientific reports‎
  • 2019‎

Increasing evidence indicates that pattern recognition receptors (PRRs) are involved in neuropathic pain after peripheral nerve injury (PNI). While a significant number of studies support an association between neuropathic pain and the innate immune response mediated through Toll-like receptors, a family of PRRs, the roles of other types of PRRs are largely unknown. In this study, we have focused on the macrophage-inducible C-type lectin (Mincle), a PRR allocated to the C-type lectin receptor family. Here, we show that Mincle is involved in neuropathic pain after PNI. Mincle-deficient mice showed impaired PNI-induced mechanical allodynia. After PNI, expression of Mincle mRNA was rapidly increased in the injured spinal nerve. Most Mincle-expressing cells were identified as infiltrating leucocytes, although the migration of leucocytes was also observed in Mincle-deficient mice. Furthermore, Mincle-deficiency affected the induction of genes, which are reported to contribute to neuropathic pain after PNI in the dorsal root ganglia and spinal dorsal horn. These results suggest that Mincle is involved in triggering sequential processes that lead to the pathogenesis of neuropathic pain.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: