Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 31 papers

Reflections on the cost of "low-cost" whole genome sequencing: framing the health policy debate.

  • Timothy Caulfield‎ et al.
  • PLoS biology‎
  • 2013‎

The cost of whole genome sequencing is dropping rapidly. There has been a great deal of enthusiasm about the potential for this technological advance to transform clinical care. Given the interest and significant investment in genomics, this seems an ideal time to consider what the evidence tells us about potential benefits and harms, particularly in the context of health care policy. The scale and pace of adoption of this powerful new technology should be driven by clinical need, clinical evidence, and a commitment to put patients at the centre of health care policy.


Towards an ethics safe harbor for global biomedical research.

  • Edward S Dove‎ et al.
  • Journal of law and the biosciences‎
  • 2014‎

Although increasingly global, data-driven genomics and other 'omics'-focused research hold great promise for health discoveries, current research ethics review systems around the world challenge potential improvements in human health from such research. To overcome this challenge, we propose a 'Safe Harbor Framework for International Ethics Equivalency' that facilitates the harmonization of ethics review of specific types of data-driven international research projects while respecting globally transposable research ethics norms and principles. The Safe Harbor would consist in part of an agency supporting an International Federation for Ethics Review (IFER), formed by a voluntary compact among countries, granting agencies, philanthropies, institutions, and healthcare, patient advocacy, and research organizations. IFER would be both a central ethics review body, and also a forum for review and follow-up of policies concerning ethics norms for international research projects. It would be built on five principle elements: (1) registration, (2) compliance review, (3) recognition, (4) monitoring and enforcement, and (5) public participation. The Safe Harbor would create many benefits for researchers, countries, and the general public, and may eventually have application beyond (gen)omics to other areas of biomedical research that increasingly engage in secondary use of data and present only negligible risks.


Genomics for All: International Open Science Genomics Projects and Capacity Building in the Developing World.

  • Martin Hetu‎ et al.
  • Frontiers in genetics‎
  • 2019‎

Genomic medicine applications have the potential to considerably improve health care in developing countries in the coming years. However, if developing countries do not improve their capacity for research and development (R&D) in the field, they might be left out of the genomics revolution. Large-scale and widely accessible databases for storing and analyzing genomic data are crucial tools for the advancement of genomic medicine. Building developing countries' capacity in genomics is accordingly closely linked to their involvement in international human genomics research initiatives. The purpose of this paper is to conduct a pilot study on the impact of international open science genomics projects on capacity building in R&D in developing countries. Using indicators we developed in previous work to measure the performance of international open science genomics projects, we analyse the policies and practices of four key projects in the field: the International HapMap Project, the Human Heredity and Health in Africa Initiative, the Malaria Genomic Epidemiology Network and the Structural Genomics Consortium. The results show that these projects play an important role in genomics capacity building in developing countries, but play a more limited role with regard to the potential redistribution of the benefits of research to the populations of these countries. We further suggest concrete initiatives that could facilitate the involvement of researchers from developing countries in the international genomics research community and accelerate capacity building in the developing world.


Ethics approval in applications for open-access clinical trial data: An analysis of researcher statements to clinicalstudydatarequest.com.

  • Derek So‎ et al.
  • PloS one‎
  • 2017‎

Although there are a number of online platforms for patient-level clinical trial data sharing from industry sponsors, they are not very harmonized regarding the role of local ethics approval in the research proposal review process. The first and largest of these platforms is ClinicalStudyDataRequest.com (CSDR), which includes over three thousand trials from thirteen sponsors including GlaxoSmithKline, Novartis, Roche, Sanofi, and Bayer. CSDR asks applicants to state whether they have received ethics approval for their research proposal, but in most cases does not require that they submit evidence of approval. However, the website does require that applicants without ethical approval state the reason it was not required. In order to examine the perspectives of researchers on this topic, we coded every response to that question received by CSDR between June 2014 and February 2017. Of 111 applicants who stated they were exempt from ethics approval, 63% mentioned de-identification, 57% mentioned the use of existing data, 33% referred to local or jurisdictional regulations, and 20% referred to the approvals obtained by the original study. We conclude by examining the experience of CSDR within the broader context of the access mechanisms and policies currently being used by other data sharing platforms, and discuss how our findings might be used to help clinical trial data providers design clear and informative access documents.


A Collaborative Model to Implement Flexible, Accessible and Efficient Oncogenetic Services for Hereditary Breast and Ovarian Cancer: The C-MOnGene Study.

  • Julie Lapointe‎ et al.
  • Cancers‎
  • 2021‎

Medical genetic services are facing an unprecedented demand for counseling and testing for hereditary breast and ovarian cancer (HBOC) in a context of limited resources. To help resolve this issue, a collaborative oncogenetic model was recently developed and implemented at the CHU de Québec-Université Laval; Quebec; Canada. Here, we present the protocol of the C-MOnGene (Collaborative Model in OncoGenetics) study, funded to examine the context in which the model was implemented and document the lessons that can be learned to optimize the delivery of oncogenetic services. Within three years of implementation, the model allowed researchers to double the annual number of patients seen in genetic counseling. The average number of days between genetic counseling and disclosure of test results significantly decreased. Group counseling sessions improved participants' understanding of breast cancer risk and increased knowledge of breast cancer and genetics and a large majority of them reported to be overwhelmingly satisfied with the process. These quality and performance indicators suggest this oncogenetic model offers a flexible, patient-centered and efficient genetic counseling and testing for HBOC. By identifying the critical facilitating factors and barriers, our study will provide an evidence base for organizations interested in transitioning to an oncogenetic model integrated into oncology care; including teams that are not specialized but are trained in genetics.


An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge.

  • Catherine A Brownstein‎ et al.
  • Genome biology‎
  • 2014‎

There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance.


Genomic cloud computing: legal and ethical points to consider.

  • Edward S Dove‎ et al.
  • European journal of human genetics : EJHG‎
  • 2015‎

The biggest challenge in twenty-first century data-intensive genomic science, is developing vast computer infrastructure and advanced software tools to perform comprehensive analyses of genomic data sets for biomedical research and clinical practice. Researchers are increasingly turning to cloud computing both as a solution to integrate data from genomics, systems biology and biomedical data mining and as an approach to analyze data to solve biomedical problems. Although cloud computing provides several benefits such as lower costs and greater efficiency, it also raises legal and ethical issues. In this article, we discuss three key 'points to consider' (data control; data security, confidentiality and transfer; and accountability) based on a preliminary review of several publicly available cloud service providers' Terms of Service. These 'points to consider' should be borne in mind by genomic research organizations when negotiating legal arrangements to store genomic data on a large commercial cloud service provider's servers. Diligent genomic cloud computing means leveraging security standards and evaluation processes as a means to protect data and entails many of the same good practices that researchers should always consider in securing their local infrastructure.


Data Safe Havens in health research and healthcare.

  • Paul R Burton‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2015‎

The data that put the 'evidence' into 'evidence-based medicine' are central to developments in public health, primary and hospital care. A fundamental challenge is to site such data in repositories that can easily be accessed under appropriate technical and governance controls which are effectively audited and are viewed as trustworthy by diverse stakeholders. This demands socio-technical solutions that may easily become enmeshed in protracted debate and controversy as they encounter the norms, values, expectations and concerns of diverse stakeholders. In this context, the development of what are called 'Data Safe Havens' has been crucial. Unfortunately, the origins and evolution of the term have led to a range of different definitions being assumed by different groups. There is, however, an intuitively meaningful interpretation that is often assumed by those who have not previously encountered the term: a repository in which useful but potentially sensitive data may be kept securely under governance and informatics systems that are fit-for-purpose and appropriately tailored to the nature of the data being maintained, and may be accessed and utilized by legitimate users undertaking work and research contributing to biomedicine, health and/or to ongoing development of healthcare systems.


Epigenome data release: a participant-centered approach to privacy protection.

  • Stephanie O M Dyke‎ et al.
  • Genome biology‎
  • 2015‎

Large-scale epigenome mapping by the NIH Roadmap Epigenomics Project, the ENCODE Consortium and the International Human Epigenome Consortium (IHEC) produces genome-wide DNA methylation data at one base-pair resolution. We examine how such data can be made open-access while balancing appropriate interpretation and genomic privacy. We propose guidelines for data release that both reduce ambiguity in the interpretation of open-access data and limit immediate access to genetic variation data that are made available through controlled access.


Clinical exome sequencing in France and Quebec: what are the challenges? What does the future hold?

  • Gabrielle Bertier‎ et al.
  • Life sciences, society and policy‎
  • 2018‎

The decreasing cost of next-generation sequencing technologies (NGS) has resulted in their increased use in research, and in the clinic. However, France and Quebec have not yet implemented nation-wide personalized medicine programs using NGS. To produce policies on the large-scale implementation of NGS, decision makers could benefit from a detailed understanding of how these technologies are currently used, their limitations, and the benefits they could bring to patients.


DataSHIELD: resolving a conflict in contemporary bioscience--performing a pooled analysis of individual-level data without sharing the data.

  • Michael Wolfson‎ et al.
  • International journal of epidemiology‎
  • 2010‎

Contemporary bioscience sometimes demands vast sample sizes and there is often then no choice but to synthesize data across several studies and to undertake an appropriate pooled analysis. This same need is also faced in health-services and socio-economic research. When a pooled analysis is required, analytic efficiency and flexibility are often best served by combining the individual-level data from all sources and analysing them as a single large data set. But ethico-legal constraints, including the wording of consent forms and privacy legislation, often prohibit or discourage the sharing of individual-level data, particularly across national or other jurisdictional boundaries. This leads to a fundamental conflict in competing public goods: individual-level analysis is desirable from a scientific perspective, but is prevented by ethico-legal considerations that are entirely valid.


Controlled Access under Review: Improving the Governance of Genomic Data Access.

  • Mahsa Shabani‎ et al.
  • PLoS biology‎
  • 2015‎

In parallel with massive genomic data production, data sharing practices have rapidly expanded over the last decade. To ensure authorized access to data, access review by data access committees (DACs) has been utilized as one potential solution. Here we discuss core elements to be integrated into the fabric of access review by both established and emerging DACs in order to foster fair, efficient, and responsible access to datasets. We particularly highlight the fact that the access review process could be adversely influenced by the potential conflicts of interest of data producers, particularly when they are directly involved in DACs management. Therefore, in structuring DACs and access procedures, possible data withholding by data producers should receive thorough attention.


Fair Shares and Sharing Fairly: A Survey of Public Views on Open Science, Informed Consent and Participatory Research in Biobanking.

  • Yann Joly‎ et al.
  • PloS one‎
  • 2015‎

Biobanks are important resources which enable large-scale genomic research with human samples and data, raising significant ethical concerns about how participants' information is managed and shared. Three previous studies of the Canadian public's opinion about these topics have been conducted. Building on those results, an online survey representing the first study of public perceptions about biobanking spanning all Canadian provinces was conducted. Specifically, this study examined qualitative views about biobank objectives, governance structure, control and ownership of samples and data, benefit sharing, consent practices and data sharing norms, as well as additional questions and ethical concerns expressed by the public.


Stem cell banking: between traceability and identifiability.

  • Bartha M Knoppers‎ et al.
  • Genome medicine‎
  • 2010‎

Stem cell banks are increasingly seen as an essential resource of biological materials for both basic and translational research. Stem cell banks support transnational access to quality-controlled and ethically sourced stem cell lines from different origins and of varying grades. According to the Organisation for Economic Co-operation and Development, advances in regenerative medicine are leading to the development of a bioeconomy, 'a world where biotechnology contributes to a significant share of economic output'. Consequently, stem cell banks are destined to constitute a pillar of the bioeconomy in many countries. While certain ethical and legal concerns are specific to the nature of stem cells, stem cell banking could do well to examine the approaches fostered by tissue banking generally. Indeed, the past decade has seen a move to simplify and harmonize biological tissue and data banking so as to foster international interoperability. In particular, the issues of consent and of traceability illustrate not only commonalities but the opportunity for stem cell banking to appreciate the lessons learned in biobanking generally. This paper analyzes convergence and divergence in issues surrounding policy harmonization, transnational sharing, informed consent, traceability and return of results in the context of stem cell banks.


From tissues to genomes.

  • Bartha M Knoppers‎
  • G3 (Bethesda, Md.)‎
  • 2013‎

No abstract available


Consent Codes: Upholding Standard Data Use Conditions.

  • Stephanie O M Dyke‎ et al.
  • PLoS genetics‎
  • 2016‎

A systematic way of recording data use conditions that are based on consent permissions as found in the datasets of the main public genome archives (NCBI dbGaP and EMBL-EBI/CRG EGA).


Managing incidental findings and research results in genomic research involving biobanks and archived data sets.

  • Susan M Wolf‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2012‎

Biobanks and archived data sets collecting samples and data have become crucial engines of genetic and genomic research. Unresolved, however, is what responsibilities biobanks should shoulder to manage incidental findings and individual research results of potential health, reproductive, or personal importance to individual contributors (using "biobank" here to refer both to collections of samples and collections of data). This article reports recommendations from a 2-year project funded by the National Institutes of Health. We analyze the responsibilities involved in managing the return of incidental findings and individual research results in a biobank research system (primary research or collection sites, the biobank itself, and secondary research sites). We suggest that biobanks shoulder significant responsibility for seeing that the biobank research system addresses the return question explicitly. When reidentification of individual contributors is possible, the biobank should work to enable the biobank research system to discharge four core responsibilities to (1) clarify the criteria for evaluating findings and the roster of returnable findings, (2) analyze a particular finding in relation to this, (3) reidentify the individual contributor, and (4) recontact the contributor to offer the finding. We suggest that findings that are analytically valid, reveal an established and substantial risk of a serious health condition, and are clinically actionable should generally be offered to consenting contributors. This article specifies 10 concrete recommendations, addressing new biobanks as well as those already in existence.


Open science versus commercialization: a modern research conflict?

  • Timothy Caulfield‎ et al.
  • Genome medicine‎
  • 2012‎

Efforts to improve research outcomes have resulted in genomic researchers being confronted with complex and seemingly contradictory instructions about how to perform their tasks. Over the past decade, there has been increasing pressure on university researchers to commercialize their work. Concurrently, they are encouraged to collaborate, share data and disseminate new knowledge quickly (that is, to adopt an open science model) in order to foster scientific progress, meet humanitarian goals, and to maximize the impact of their research.


Genomics4RD: An integrated platform to share Canadian deep-phenotype and multiomic data for international rare disease gene discovery.

  • Hannah G Driver‎ et al.
  • Human mutation‎
  • 2022‎

Despite recent progress in the understanding of the genetic etiologies of rare diseases (RDs), a significant number remain intractable to diagnostic and discovery efforts. Broad data collection and sharing of information among RD researchers is therefore critical. In 2018, the Care4Rare Canada Consortium launched the project C4R-SOLVE, a subaim of which was to collect, harmonize, and share both retrospective and prospective Canadian clinical and multiomic data. Here, we introduce Genomics4RD, an integrated web-accessible platform to share Canadian phenotypic and multiomic data between researchers, both within Canada and internationally, for the purpose of discovering the mechanisms that cause RDs. Genomics4RD has been designed to standardize data collection and processing, and to help users systematically collect, prioritize, and visualize participant information. Data storage, authorization, and access procedures have been developed in collaboration with policy experts and stakeholders to ensure the trusted and secure access of data by external researchers. The breadth and standardization of data offered by Genomics4RD allows researchers to compare candidate disease genes and variants between participants (i.e., matchmaking) for discovery purposes, while facilitating the development of computational approaches for multiomic data analyses and enabling clinical translation efforts for new genetic technologies in the future.


Communicating science: epigenetics in the spotlight.

  • Stephanie O M Dyke‎ et al.
  • Environmental epigenetics‎
  • 2020‎

Given the public interest in epigenetic science, this study aimed to better understand media representations of epigenetics in national newspaper coverage in various regions in North America, Europe, and Asia. Content analysis was used to study media messages about epigenetics, their policy focus, and the balance of the reporting. We identified several recurring themes in the news reports, including policy messages relating to individual and societal responsibilities. We also found shortcomings in the media's portrayal of epigenetic science, and sought to identify potential causes by considering the underlying scientific evidence that the media reported on. A case study analysis showed that the results of epigenetic studies were often overstated in academic research publications due to common experimental limitations. We suggest that defining standardized criteria with which to evaluate epigenetic studies could help to overcome some of the challenges inherent in translating complex epigenetic research findings for non-technical audiences, and present a Press Kit template that researchers can adapt and use to aid in the development of accurate and balanced press releases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: