Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 33 papers

Rigosertib as a selective anti-tumor agent can ameliorate multiple dysregulated signaling transduction pathways in high-grade myelodysplastic syndrome.

  • Feng Xu‎ et al.
  • Scientific reports‎
  • 2014‎

Rigosertib has demonstrated therapeutic activity for patients with high-risk myelodysplastic syndrome (MDS) in clinical trials. However, the role of rigosertib in MDS has not been thoroughly characterized. In this study, we found out that rigosertib induced apoptosis, blocked the cell cycle at the G2/M phase and subsequently inhibited the proliferation of CD34+ cells from MDS, while it minimally affected the normal CD34+ cells. Further studies showed that rigosertib acted via the activation of the P53 signaling pathway. Bioinformatics analysis based on gene expression profile and flow cytometry analysis revealed the abnormal activation of the Akt-PI3K, Jak-STAT and Wnt pathways in high-grade MDS, while the p38 MAPK, SAPK/JNK and P53 pathways were abnormally activated in low-grade MDS. Rigosertib could markedly inhibit the activation of the Akt-PI3K and Wnt pathways, whereas it activated the SAPK/JNK and P53 pathways in high-grade MDS. A receptor tyrosine kinase phosphorylation array demonstrated that rigosertib could increase the activation of RET and PDGFR-β while reducing the activation of Tie2 and VEGFR2 in MDS cells. Taken together, these data indicate that rigosertib is a selective and promising anti-tumor agent that could ameliorate multiple dysregulated signaling transduction pathways in high-grade MDS.


An efficient antimicrobial depot for infectious site-targeted chemo-photothermal therapy.

  • Menglong Liu‎ et al.
  • Journal of nanobiotechnology‎
  • 2018‎

Silver and photothermal therapy (PTT) have been widely used for eradicating the drug-resistant bacteria. However, the risks of excess of silver for humans and the low efficiency of PTT still limit their in vivo therapeutic application. Integration of two distinctive bactericides into one entity is a promising platform to improve the efficiency of antimicrobial agents.


Implantable Thermal Therapeutic Device with Precise Temperature Control Enabled by Foldable Electronics and Heat-Insulating Pads.

  • Min Cai‎ et al.
  • Research (Washington, D.C.)‎
  • 2022‎

Thermal therapy has continued to attract the attention of researchers and clinicians due to its important applications in tumor ablation, wound management, and drug release. The lack of precise temperature control capability in traditional thermal treatment may cause the decrease of therapeutic effect and thermal damage to normal tissues. Here, we report an implantable thermal therapeutic device (ITTD), which offers precise closed loop heating, in situ temperature monitoring, and thermal protection. The ITTD features a multifunctional foldable electronics device wrapped on a heat-insulating composite pad. Experimental and numerical studies reveal the fundamental aspects of the design, fabrication, and operation of the ITTD. In vivo experiments of the ITTD in thermal ablation for antitumor demonstrate that the proposed ITTD is capable of controlling the ablation temperature precisely in real time with a precision of at least 0.7°C and providing effective thermal protection to normal tissues. This proof-of-concept research creates a promising route to develop ITTD with precise temperature control capability, which is highly desired in thermal therapy and other disease diagnosis and treatments.


Shape-recovery of implanted shape-memory devices remotely triggered via image-guided ultrasound heating.

  • Yang Zhu‎ et al.
  • Nature communications‎
  • 2024‎

Shape-memory materials hold great potential to impart medical devices with functionalities useful during implantation, locomotion, drug delivery, and removal. However, their clinical translation is limited by a lack of non-invasive and precise methods to trigger and control the shape recovery, especially for devices implanted in deep tissues. In this study, the application of image-guided high-intensity focused ultrasound (HIFU) heating is tested. Magnetic resonance-guided HIFU triggered shape-recovery of a device made of polyurethane urea while monitoring its temperature by magnetic resonance thermometry. Deformation of the polyurethane urea in a live canine bladder (5 cm deep) is achieved with 8 seconds of ultrasound-guided HIFU with millimeter resolution energy focus. Tissue sections show no hyperthermic tissue injury. A conceptual application in ureteral stent shape-recovery reduces removal resistance. In conclusion, image-guided HIFU demonstrates deep energy penetration, safety and speed.


Efficient Production of Human Norovirus-Specific IgY in Egg Yolks by Vaccination of Hens with a Recombinant Vesicular Stomatitis Virus Expressing VP1 Protein.

  • Yang Zhu‎ et al.
  • Viruses‎
  • 2019‎

Human norovirus (HuNoV) is responsible for more than 95% of outbreaks of acute nonbacterial gastroenteritis worldwide. Despite major efforts, there are no vaccines or effective therapeutic interventions against this virus. Chicken immunoglobulin Y (IgY)-based passive immunization has been shown to be an effective strategy to prevent and treat many enteric viral diseases. Here, we developed a highly efficient bioreactor to generate high titers of HuNoV-specific IgY in chicken yolks using a recombinant vesicular stomatitis virus expressing HuNoV capsid protein (rVSV-VP1) as an antigen. We first demonstrated that HuNoV VP1 protein was highly expressed in chicken cells infected by rVSV-VP1. Subsequently, we found that White Leghorn hens immunized intramuscularly with rVSV-VP1 triggered a high level of HuNoV-specific yolk IgY antibodies. The purified yolk IgY was efficiently recognized by HuNoV virus-like particles (VLPs). Importantly, HuNoV-specific IgY efficiently blocked the binding of HuNoV VLPs to all three types (A, B, and O) of histo-blood group antigens (HBGAs), the attachment factors for HuNoV. In addition, the receptor blocking activity of IgY remained stable at temperature below 70 °C and at pH ranging from 4 to 9. Thus, immunization of hens with VSV-VP1 could be a cost-effective and practical strategy for large-scale production of anti-HuNoV IgY antibodies for potential use as prophylactic and therapeutic treatment against HuNoV infection.


Auxin Response Factors promote organogenesis by chromatin-mediated repression of the pluripotency gene SHOOTMERISTEMLESS.

  • Yuhee Chung‎ et al.
  • Nature communications‎
  • 2019‎

Specification of new organs from transit amplifying cells is critical for higher eukaryote development. In plants, a central stem cell pool maintained by the pluripotency factor SHOOTMERISTEMLESS (STM), is surrounded by transit amplifying cells competent to respond to auxin hormone maxima by giving rise to new organs. Auxin triggers flower initiation through Auxin Response Factor (ARF) MONOPTEROS (MP) and recruitment of chromatin remodelers to activate genes promoting floral fate. The contribution of gene repression to reproductive primordium initiation is poorly understood. Here we show that downregulation of the STM pluripotency gene promotes initiation of flowers and uncover the mechanism for STM silencing. The ARFs ETTIN (ETT) and ARF4 promote organogenesis at the reproductive shoot apex in parallel with MP via histone-deacetylation mediated transcriptional silencing of STM. ETT and ARF4 directly repress STM, while MP acts indirectly, through its target FILAMENTOUS FLOWER (FIL). Our data suggest that - as in animals- downregulation of the pluripotency program is important for organogenesis in plants.


SF3B1-mutated myelodysplastic syndrome with ring sideroblasts harbors more severe iron overload and corresponding over-erythropoiesis.

  • Yang Zhu‎ et al.
  • Leukemia research‎
  • 2016‎

To clarify the possible biological differences and implication of the SF3B1 gene for patients with MDS-RS (myelodysplastic syndromes with ring sideroblasts).


TERMINAL FLOWER 1-FD complex target genes and competition with FLOWERING LOCUS T.

  • Yang Zhu‎ et al.
  • Nature communications‎
  • 2020‎

Plants monitor seasonal cues to optimize reproductive success by tuning onset of reproduction and inflorescence architecture. TERMINAL FLOWER 1 (TFL1) and FLOWERING LOCUS T (FT) and their orthologs antagonistically regulate these life history traits, yet their mechanism of action, antagonism and targets remain poorly understood. Here, we show that TFL1 is recruited to thousands of loci by the bZIP transcription factor FD. We identify the master regulator of floral fate, LEAFY (LFY) as a target under dual opposite regulation by TFL1 and FT and uncover a pivotal role of FT in promoting flower fate via LFY upregulation. We provide evidence that the antagonism between FT and TFL1 relies on competition for chromatin-bound FD at shared target loci. Direct TFL1-FD regulated target genes identify this complex as a hub for repressing both master regulators of reproductive development and endogenous signalling pathways. Our data provide mechanistic insight into how TFL1-FD sculpt inflorescence architecture, a trait important for reproductive success, plant architecture and yield.


Dimethylbisphenol A inhibits the differentiation of stem Leydig cells in adult male rats by androgen receptor (NR3C4) antagonism.

  • Lei Shi‎ et al.
  • Toxicology letters‎
  • 2022‎

Dimethylbisphenol A (DMBPA) is a novel alternative to bisphenol A. Whether short-term exposure to DMBPA affects Leydig cell regeneration remains unknown. The Leydig cell regeneration model was generated by intraperitoneal injection of 75 mg/kg ethane dimethane sulfonate (EDS) to adult male Sprague-Dawley rats. Leydig cell regeneration began on day 14 after EDS. Rats were gavaged with 0, 10, 50, or 200 mg/kg DMBPA from days 14-28 post-EDS, and Leydig cell regeneration was assessed on days 28 and 56 post-EDS. DMBPA significantly reduced serum testosterone levels on days 28 and 56 at 10 mg/kg and higher doses and sperm count in the caudal epididymis on day 56 at 200 mg/kg, without affecting estradiol, luteinizing hormone, and follicle-stimulating hormone. DMBPA had no effect on Leydig cell number but significantly down-regulated Scarb1 expression at ≥ 10 mg/kg on day 28, Cyp17a1 expression on day 28 at 200 mg/kg and on day 56 at ≥ 10 mg/kg. DMBPA markedly upregulated Srd5a1 expression at doses of 50 and 200 mg/kg on day 56 after EDS. DMBPA significantly down-regulated the expression of Sod1 and Nr3c4 at a dose of 200 mg/kg on day 28. Further semi-quantitative immunohistochemistry showed that DMBPA reduced NR3C4 levels in Leydig and Sertoli cells at 50 and 200 mg/kg. In vitro DMBPA treatment of immature Leydig cells for 24 h showed that it significantly reduced testosterone production at 10 and 50 μM, and further mechanistic studies showed that an NR3C4 agonist 7α-methyl-19-nortestosterone significantly reversed DMBPA-mediated suppression on testosterone output, but the estrogen receptor antagonist ICI 182,780 and G-coupled estrogen receptor 1 agonist G15 had no effect. In conclusion, DMBPA delays Leydig cell regeneration after short-term exposure during early Leydig cell regeneration via NR3C4 antagonism.


White-light crosslinkable milk protein bioadhesive with ultrafast gelation for first-aid wound treatment.

  • Qinchao Zhu‎ et al.
  • Biomaterials research‎
  • 2023‎

Post-traumatic massive hemorrhage demands immediately available first-aid supplies with reduced operation time and good surgical compliance. In-situ crosslinking gels that are flexibly adapting to the wound shape have a promising potential, but it is still hard to achieve fast gelation, on-demand adhesion, and wide feasibility at the same time.


One new species of the genus Sinopoda from Hubei Province, with description of the male of Sinopoda angulata (Araneae, Sparassidae).

  • Yang Zhu‎ et al.
  • Biodiversity data journal‎
  • 2020‎

In the past year, Prof. Jian Chen conducted several spider collections in Hubei Province. Almost 1000 spiders were collected. After diagnosis, two of them were found to belong to the genus Sinopoda Jäger, 1999.


Effects of low-dose furosemide combined with aminophylline on the renal function in septic shock patients.

  • Zhenhua Mai‎ et al.
  • Renal failure‎
  • 2023‎

To investigate the effects of low-dose furosemide and aminophylline on the renal function in patients with septic shock.


Characterization of an outbreak of hand, foot, and mouth disease in Nanchang, China in 2010.

  • Michelle Y Liu‎ et al.
  • PloS one‎
  • 2011‎

Recent outbreaks of human enterovirus 71 (EV71) infection and EV71-associated hand, foot, and mouth disease (HFMD) in China have affected millions and potentially lead to life-threatening complications in newborns. Furthermore, these outbreaks represent a significant global public health issue in the world. Understanding the epidemiology of HFMD and EV71 infection and their transmission patterns in China is essential for controlling outbreaks. However, no studies on the outbreaks of HFMD and EV71 infection in China during 2010 have been reported. In this report, we carried out an epidemiological analysis to study an outbreak of HFMD and EV71 infection in 2010 in the city of Nanchang in the Jiangxi province of People's Republic of China. From April 7 to May 11, 2010, a total of 109 HFMD cases were reported, and in this report the HFMD cases were studied by both epidemiological and laboratory analyses. The epidemiological study indicates that children aged younger than 8 years old represented more than 90% of the reported cases, with the age group of 1-3 years containing the highest number of cases. Laboratory studies detected a high prevalence of EV71 amongst the cases in our study, suggesting EV71 as a common enterovirus found in HFMD cases in Nanchang. Phylogenetic analysis of the sequence of the VP1 region of four EV71 isolates indicated that the Nanchang strains belong to the C4 subgenotype commonly found in China during outbreaks in 2008 but contain distinct variations from these strains. Our study for the first time characterizes the epidemiology of HFMD and EV71 infection in China in 2010 and furthermore, provides the first direct evidence of the genotype of EV71 circulating in Nanchang, China. Our study should facilitate the development of public health measures for the control and prevention of HFMD and EV71 infection in at-risk individuals in China.


Whole-exome and targeted sequencing identify ROBO1 and ROBO2 mutations as progression-related drivers in myelodysplastic syndromes.

  • Feng Xu‎ et al.
  • Nature communications‎
  • 2015‎

The progressive mechanism underlying myelodysplastic syndrome remains unknown. Here we identify ROBO1 and ROBO2 as novel progression-related somatic mutations using whole-exome and targeted sequencing in 6 of 16 (37.5%) paired MDS patients with disease progression. Further deep sequencing detects 20 (10.4%) patients with ROBO mutations in a cohort of 193 MDS patients. In addition, copy number loss and loss of heterogeneity (LOH) of ROBO1 and ROBO2 are frequently observed in patients with progression or carrying ROBO mutations. In in vitro experiments, overexpression of ROBO1 or ROBO2 produces anti-proliferative and pro-apoptotic effects in leukaemia cells. However, this effect was lost in ROBO mutants and ROBO-SLIT2 signalling is impaired. Multivariate analysis shows that ROBO mutations are independent factors for predicting poor survival. These findings demonstrate a novel contribution of ROBO mutations to the pathogenesis of MDS and highlight a key role for ROBO-SLIT2 signalling in MDS disease progression.


Identification of a Novel Acinetobacter baumannii Phage-Derived Depolymerase and Its Therapeutic Application in Mice.

  • Can Wang‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

The rapid expansion of Acinetobacter baumannii clinical isolates exhibiting resistance to most or all available antibiotics is a global concern. Current treatments for infections caused by this bacterium have become less effective, and the need to explore new alternative therapies is urgent. Depolymerases derived from phages are emerging as attractive anti-virulence agents. In this study, a previously isolated A. baumannii phage (designated as vB_AbaM_IME285) was characterized, and genomic study was carried out using various bioinformatics tools. A gene predicted as encoding for the depolymerase was cloned and expressed, and the depolymerase activity of the recombinant enzyme (Dp49) was identified both in vitro and in experimental mice. The results showed that phage IME285 formed translucent halos around the plaques when inoculated onto a lawn of the host bacteria, exibiting depolymerase activity against this strain. On the basis of complete genome sequencing and bioinformatics analysis, ORF49 was speculated to be a gene encoding for the putative capsule depolymerase. The expressed recombinant Dp49 displayed an effective depolymerase activity and had a spectrum of activity similar to its parental phage IME285, which was active against 25 out of 49 A. baumannii strains. It was found that Dp49 greatly improved the inhibitory effect of serum on bacterial growth in vitro, and the administration of this enzyme significantly increased the survival rates of A. baumannii-infected mice in the animal experiment. In conclusion, the phage-encoded depolymerase Dp49 might be a promising alternative means of controlling infections mediated by multidrug-resistant A. baumannii.


Multifunctional elastomer cardiac patches for preventing left ventricle remodeling after myocardial infarction in vivo.

  • Yuejun Yao‎ et al.
  • Biomaterials‎
  • 2022‎

Myocardial infarction (MI) is still a major cause of mortality and morbidity worldwide. Elastomer cardiac patches have shown great potential in preventing left ventricle (LV) remodeling post-MI by providing mechanical support to the infarcted myocardium. Improved therapeutic outcomes are expected by mediating pathological processes in the necrosis phase, inflammation phase, and fibrosis phase, through orchestrated biological and mechanical treatments. In this study, a mechanically robust multifunctional cardiac patch integrating reactive oxygen species (ROS)-scavenging, anti-inflammatory, and pro-angiogenic capabilities was developed to realize the integrative strategy. An elastomeric polyurethane (PFTU) containing ROS-sensitive poly (thioketal) (PTK) and unsaturated poly (propylene fumarate) (PPF) segments was synthesized, which was further clicked with pro-angiogenic Arg-Glu-Asp-Val (REDV) peptides to obtain PFTU-g-REDV (PR), and was formulated into a macroporous patch containing rosuvastatin (PRR). The mechanical support and multifunctional effects of the patch were confirmed in a rat MI model in vivo compared to the patches with only mechanical support, leading to reduced cell apoptosis, suppressed local inflammatory response, alleviated fibrosis, and induced angiogenesis. The cardiac functions and LV morphology were also well maintained. These results demonstrate the advantages of the integrated and orchestrated treatment strategy in MI therapy.


Differing Dietary Nutrients and Diet-Associated Bacteria Has Limited Impact on Spider Gut Microbiota Composition.

  • Wang Zhang‎ et al.
  • Microorganisms‎
  • 2021‎

Spiders are a key predator of insects across ecosystems and possess great potential as pest control agents. Unfortunately, it is difficult to artificially cultivate multiple generations of most spider species. Since gut bacterial flora has been shown to significantly alter nutrient availability, it is plausible that the spiders' microbial community plays a key role in their unsuccessful breeding. However, both the gut microbial composition and its influencing factors in many spiders remain a mystery. In this study, the gut microbiota of Campanicola campanulata, specialists who prey on ants and are widely distributed across China, was characterized. After, the impact of diet and diet-associated bacteria on gut bacterial composition was evaluated. First, two species of prey ants (Lasius niger and Tetramorium caespitum) were collected from different locations and fed to C. campanulata. For each diet, we then profiled the nutritional content of the ants, as well as the bacterial communities of both the ants and spiders. Results showed that the protein and carbohydrate content varied between the two prey ant species. We isolated 682 genera from 356 families in the ants (dominant genera including Pseudomonas, Acinetobacter, Paraburkholderia, Staphylococcus, and Novosphingobium), and 456 genera from 258 families in the spiders (dominated by Pseudomonas). However, no significant differences were found in the gut microbiota of spiders that were fed the differing ants. Together, these results indicate that nutritional variation and diet-associated bacterial differences have a limited impact on the microbial composition of spider guts, highlighting that spiders may have a potentially stable internal environment and lay the foundation for future investigations into gut microbiota.


Biomineralized hybrid nanodots for tumor therapy via NIR-II fluorescence and photothermal imaging.

  • Xuegang Niu‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2022‎

Chemodynamic therapy (CDT) is an emerging and promising therapeutic strategy that suppresses tumor growth by catalytically converting intracellular hydrogen peroxide (H2O2) into highly-reactive hydroxyl radicals (•OH). However, the inherent substrate of H2O2 is relatively insufficient to achieve desirable CDT efficacy. Therefore, searching for integrated therapeutic methods with synergistic therapeutic modality is especially vital to augment therapeutic outcomes. Herein, we reported nanodot- CuxMnySz @BSA@ICG (denoted as CMS@B@I) and bovine serum albumin (BSA)-based biomineralization CuxMnySz (CMS) loaded with photodynamic agent-indocyanine green (ICG). CMS@B@I converts endogenous hydrogen peroxide (H2O2) into highly active hydroxyl radical (•OH) via Fenton reaction, and effectively produces reactive oxygen species (ROS) after being exposed to 808 nm laser irradiation, attributable to the excellent photodynamic agent-ICG. This results in eliciting a ROS storm. Additionally, CMS@B@I exhibits a superior photothermal effect under NIR-II 1064 nm laser irradiation to enhance tumor CDT efficacy. The NIR-II fluorescence imaging agent of ICG and the excellent photothermal effect of CMS@B@I are highly beneficial to NIR-II fluorescence and infrared thermal imaging, respectively, resulting in tracing the fate of CMS@B@I. This study attempts to design a bimodal imaging-guided and photothermal-enhanced CDT nanoagent for augmenting tumor catalytic therapy.


An FMRFamide Neuropeptide in Cuttlefish Sepia pharaonis: Identification, Characterization, and Potential Function.

  • Yang Zhu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Neuropeptides are released by neurons that are involved in a wide range of brain functions, such as food intake, metabolism, reproduction, and learning and memory. A full-length cDNA sequence of an FMRFamide gene isolated from the cuttlefish Sepia pharaonis (designated as SpFMRFamide) was cloned. The predicted precursor protein contains one putative signal peptide and four FMRFamide-related peptides. Multiple amino acid and nucleotide sequence alignments showed that it shares 97% similarity with the precursor FMRFamides of Sepiella japonica and Sepia officinalis and shares 93% and 92% similarity with the SpFMRFamide gene of the two cuttlefish species, respectively. Moreover, the phylogenetic analysis also suggested that SpFMRFamide and FMRFamides from S. japonica and S. officinalis belong to the same sub-branch. Tissue expression analysis confirmed that SpFMRFamide was widely distributed among tissues and predominantly expressed in the brain at the three development stages. The combined effects of SpFMRFamide+SpGnRH and SpFLRFamide+SpGnRH showed a marked decrease in the level of the total proteins released in the CHO-K1 cells. This is the first report of SpFMRFamide in S. pharaonis and the results may contribute to future studies of neuropeptide evolution or may prove useful for the development of aquaculture methods for this cuttlefish species.


p75NTR Ectodomain Ameliorates Cognitive Deficits and Pathologies in a Rapid Eye Movement Sleep Deprivation Mice Model.

  • Yang Zhu‎ et al.
  • Neuroscience‎
  • 2022‎

The neurotrophin receptor p75 (p75NTR) is a circadian rhythm regulator and mediates cognitive deficits induced by sleep deprivation (SD). The soluble extracellular domain of p75NTR (p75ECD) has been shown to exert a neuroprotective function in Alzheimer's disease (AD) and depression animal models. Nevertheless, the role of p75ECD in SD-induced cognitive dysfunction is unclear. In the present study we administrated p75ECD-Fc (10, 3 mg/kg), a recombinant fusion protein of human p75ECD and fragment C of immunoglobulin IgG1, to treat mice via intraperitoneal injection. The results revealed that peripheral supplementation of high-dose p75ECD-Fc (10 mg/kg) recovered the balance between Aβ and p75ECD in the hippocampus and rescued the cognitive deficits in SD mice. We also found that p75ECD-Fc ameliorated other pathologies induced by SD, including neuronal apoptosis, synaptic plasticity impairment and neuroinflammation. The current study suggests that p75ECD-Fc is a potential candidate for SD and peripheral supplementation of p75ECD-Fc may be a prospective preventive measure for cognitive decline in SD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: