2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 92 papers

Increased All-Cause Mortality Associated With Digoxin Therapy in Patients With Atrial Fibrillation: An Updated Meta-Analysis.

  • Ying Chen‎ et al.
  • Medicine‎
  • 2015‎

Digoxin is still commonly used in atrial fibrillation (AF) patients with and without heart failure (HF) for heart rate control. Studies concerning the detrimental effects of digoxin therapy in AF patients are inconsistent. This updated meta-analysis examined the association of digoxin therapy with all-cause mortality in AF patients, stratified by heart function status. We included observational studies with multivariate-adjusted data on digoxin and all-cause mortality in the analysis. The relative risks (RRs) of all-cause mortality were calculated and reported with 95% confidence intervals (95% CIs). Seventeen studies comprising 408,660 patients were included. Overall, in AF patients, digoxin treatment was associated with a significant increase in all-cause mortality after multivariate-adjustment (RR = 1.22; 95% CI 1.15-1.30). When stratified by heart function status, digoxin treatment was associated with a 14% increase in all-cause mortality in AF patients with HF (RR = 1.14, 95% CI 1.04-1.24), and a 36% increase in those without HF (RR = 1.36, 95% CI 1.18-1.56). The increased risk of all-cause mortality was significantly higher in AF patients without HF compared with those with HF (P for interaction = 0.04). This meta-analysis demonstrates that digoxin therapy was associated with a significant increase in all-cause mortality in AF patients, especially in those without HF. Given other available options, digoxin should be avoided as a first-line agent for heart rate control in AF patients.


Mesenchymal Stromal Cells Mitigate Experimental Colitis via Insulin-like Growth Factor Binding Protein 7-mediated Immunosuppression.

  • Yan Liao‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2016‎

Mesenchymal stromal cells (MSCs) have shown great potential for treating inflammatory bowel disease, which is ameliorated through paracrine cross talk between MSCs and T-cells. Members of the insulin-like growth factor binding protein (IGFBP) family have important immunomodulatory functions in MSCs, but the underlying mechanisms behind these functions have not yet been clearly elucidated. In this study, we investigate whether MSC-produced IGFBP7 is involved in immune modulation using a mouse experimental colitis model. Gene expression profiling revealed that IGFBP7 was highly expressed in MSCs. Consistent with this findings, IGFBP7 knockdown in MSCs significantly decreased their immunomodulatory properties, decreasing the antiproliferative functions of MSCs against T-cells, while also having an effect on the proinflammatory cytokine production of the T-cells. Furthermore, in the mouse experimental colitis model, MSC-derived IGFBP7 ameliorated the clinical and histopathological severity of induced colonic inflammation and also restored the injured gastrointestinal mucosal tissues. In conclusion, IGFBP7 contributes significantly to MSC-mediated immune modulation, as is shown by the ability of IGFBP7 knockdown in MSCs to restore proliferation and cytokine production in T-cells. These results suggest that IGFBP7 may act as a novel MSC-secreted immunomodulatory factor.


Human mesenchymal stromal cells enhance the immunomodulatory function of CD8(+)CD28(-) regulatory T cells.

  • Qiuli Liu‎ et al.
  • Cellular & molecular immunology‎
  • 2015‎

One important aspect of mesenchymal stromal cells (MSCs)-mediated immunomodulation is the recruitment and induction of regulatory T (Treg) cells. However, we do not yet know whether MSCs have similar effects on the other subsets of Treg cells. Herein, we studied the effects of MSCs on CD8(+)CD28(-) Treg cells and found that the MSCs could not only increase the proportion of CD8(+)CD28(-) T cells, but also enhance CD8(+)CD28(-)T cells' ability of hampering naive CD4(+) T-cell proliferation and activation, decreasing the production of IFN-γ by activated CD4(+) T cells and inducing the apoptosis of activated CD4(+) T cells. Mechanistically, the MSCs affected the functions of the CD8(+)CD28(-) T cells partially through moderate upregulating the expression of IL-10 and FasL. The MSCs had no distinct effect on the shift from CD8(+)CD28(+) T cells to CD8(+)CD28(-) T cells, but did increase the proportion of CD8(+)CD28(-) T cells by reducing their rate of apoptosis. In summary, this study shows that MSCs can enhance the regulatory function of CD8(+)CD28(-) Treg cells, shedding new light on MSCs-mediated immune regulation.


Effects of long-term rapamycin treatment on glial scar formation after cryogenic traumatic brain injury in mice.

  • Yan-Ying Fan‎ et al.
  • Neuroscience letters‎
  • 2018‎

Glial scar impedes axon regeneration and functional recovery following traumatic brain injury (TBI). Although it has been shown that rapamycin (a specific inhibitor of mammalian target of rapamycin) can reduce astrocyte reactivation in the early stage of TBI, its effect on glial scar formation has not been characterized in TBI and other acute brain injury models. To test this, ICR mice received daily administration of rapamycin (0.5 or 1.5 mg/kg, i.p.) beginning at 1 h after cryogenic TBI (cTBI). The results showed that at 3 d post-injury, 1.5 mg/kg rapamycin increased cTBI-induced motor functional deficits and infarct size, and attenuated astrocyte reactivation in the ipsilateral cortex, while 0.5 mg/kg rapamycin did not worsen brain damage and only slightly attenuated astrocyte reactivation. Furthermore, at 7 and 14 d after cTBI, 0.5 mg/kg rapamycin group showed a better motor functional performance than cTBI group. At 14 d post-injury, 0.5 mg/kg rapamycin significantly reduced the area and thickness of glial scar and chondroitin sulfate proteoglycan expression, accompanied by decreased expression of p-S6 and enhanced expression of growth associated protein 43 (an axon regeneration marker) in the region of glial scar. Our data suggest that long-term treatment with rapamycin can inhibit glial scar formation after cTBI, which may be involved in the mechanisms of increased axon regeneration and improved neurological functional recovery, and low-dose rapamycin may be more beneficial for such a therapy.


Expression of Allograft Inflammatory Factor-1 (AIF-1) in Hepatocellular Carcinoma.

  • Qifan Zhang‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2018‎

BACKGROUND Allograft inflammatory factor-1 (AIF-1) is a cytoplasmic protein cloned from activated macrophages in human and rat allografts. AIF-1 has been identified as a modulator of inflammatory response, and recently published studies have shown its increased expression in carcinogenesis. However, there are still limited data on the potential functional role of AIF-1 in hepatocellular carcinoma (HCC). MATERIAL AND METHODS We evaluated the expression of AIF-1 in 104 cases of paired HCC and adjacent non-cancerous liver tissues using immunohistochemistry, Western blotting, and qPCR analysis, and sought to determine whether its expression was correlated with clinicopathological features. In vitro assays, including cell proliferation and migration assays, were used to study the effects of AIF-1 knockdown in L02 human hepatocyte, and Huh7 and SMMC7721 liver cancer cell lines. RESULTS Expression of AIF-1 was increased in HCC compared to adjacent normal liver tissues and was positively correlated with median tumor size (p=0.046), number of tumor deposits (p=0.009), the Barcelona Clinic Liver Cancer (BCLC) stage (p=0.004), and portal vein tumor thrombus (PVTT) (p<0.001). Huh7 and SMMC7721 human HCC cells demonstrated upregulated AIF-1 expression compared to normal hepatocytes. Small interfering RNA (siRNA)-mediated silencing of AIF-1 expression resulted in a reduction in cell proliferation and migration in human HCC cells. CONCLUSIONS These findings suggest AIF-1 may have roles as a diagnostic or prognostic biomarker and a promising therapeutic target in HCC.


Mesenchymal stromal cells-derived matrix Gla protein contribute to the alleviation of experimental colitis.

  • Yuan Feng‎ et al.
  • Cell death & disease‎
  • 2018‎

Crohn's disease (CD) is a chronic inflammatory bowel disease that is difficult to treat. However, previous preclinical and clinical studies have shown that mesenchymal stromal cells (MSCs) are a promising therapeutic approach, whereas the exact underlying molecular mechanisms of MSCs in treating CD remain unclear. Furthermore, the heterogeneity of MSCs, as well as the in vivo microenvironments may influence the therapeutic efficacy. In our previous study, we found that a subpopulation of mouse MSCs with a high expression of matrix Gla protein (MGP), one of the members of vitamin K-dependent protein family, possessed better immunoregulatory properties. Therefore, in this study we investigate whether the abundant MSCs-derived MGP participate in the therapeutic mechanisms for MSCs treating CD. Obvious suppression of cell proliferation and cytokine production in T cells were observed in vitro through MSCs-derived MGP. Moreover, MGP alleviated the clinical and histopathological severity of colonic inflammation in mouse experimental colitis models to a remarkable degree. Our results indicate that MGP might be a novel important mediator of MSCs-mediated immunomodulation in treating CD.


Heterogeneity of the biological properties and gene expression profiles of murine bone marrow stromal cells.

  • Junxia Lei‎ et al.
  • The international journal of biochemistry & cell biology‎
  • 2013‎

Although mesenchymal stromal cells (MSCs) have demonstrated great therapeutic potential, the heterogeneity of MSCs may be responsible for the incongruent data obtained in MSC-based preclinical studies and clinical trials. Here, four mouse clonal MSC lines, termed MSC1, MSC2, MSC3, and MSC4, were isolated and extensively characterized. MSC4 cells grew most rapidly and formed colonies of the largest size, whereas MSC3 cells exhibited the slowest growth and formed only a few tiny clusters. MSC4 cells could differentiate into adipocytes, osteoblasts, and chondrocytes in vitro, and more importantly, establish hematopoietic microenvironment in vivo; whereas the other lines displayed uni-adipogenic, osteo-chondrogenic, or non-differentiation potential. All lines were positive for Sca-1, CD106, and CD44; MSC4 was also positive for CD90.2. In terms of immunosuppressive capacity, MSC2, MSC3, and MSC4 cells exerted clear inhibitory effects on lymphocyte proliferation, whereas MSC1 did not. Further investigation revealed that the NO and not the PGE2 pathway may play a role in the different immunomodulatory effects of the cell lines. To clarify the molecular basis of this heterogeneity, we employed RNA sequencing to compare the gene expression profiles of the four subtypes, revealing a relationship between gene expression and variability in subtype function. This study provides novel information about the heterogeneity of MSCs and insight into the selection of optimal cell sources for therapeutic applications.


Modeling the Pathogenesis of Charcot-Marie-Tooth Disease Type 1A Using Patient-Specific iPSCs.

  • Lei Shi‎ et al.
  • Stem cell reports‎
  • 2018‎

Charcot-Marie-Tooth disease type 1A (CMT1A), one of the most frequent inherited peripheral neuropathies, is associated with PMP22 gene duplication. Previous studies of CMT1A mainly relied on rodent models, and it is not yet clear how PMP22 overexpression leads to the phenotype in patients. Here, we generated the human induced pluripotent stem cell (hiPSC) lines from two CMT1A patients as an in vitro cell model. We found that, unlike the normal control cells, CMT1A hiPSCs rarely generated Schwann cells through neural crest stem cells (NCSCs). Instead, CMT1A NCSCs produced numerous endoneurial fibroblast-like cells in the Schwann cell differentiation system, and similar results were obtained in a PMP22-overexpressing iPSC model. Therefore, despite the demyelination-remyelination and/or dysmyelination theory for CMT1A pathogenesis, developmental disabilities of Schwann cells may be considered as an underlying cause of CMT1A. Our results may have important implications for the uncovering of the underlying mechanism and the development of a promising therapeutic strategy for CMT1A neuropathy.


Dickkopf-related protein 3 negatively regulates the osteogenic differentiation of rat dental follicle cells.

  • Xinchun Zhang‎ et al.
  • Molecular medicine reports‎
  • 2017‎

The present study aimed to investigate the effect of Dickkopf-related protein 3 (DKK3) on osteogenic differentiation of rat dental follicle cells (DFCs). A PCR array analysis of Wnt pathway activation in DFCs identified genes dysregulated by mineral induction. Among them, DKK3expression levels were decreased, and further experiments were conducted to investigate its role in DFC osteogenesis. By comparing DFCs grown in normal growth and mineral‑induction media for 4 weeks, the present study confirmed that DKK3 was a potential target gene of osteogenesis through reverse transcription-quantitative polymerase chain reaction (RT‑qPCR) and western blotting (WB). A short hairpin RNA (shRNA) was introduced into DFCs using a lentiviral vector to inhibit DKK3 expression. An alkaline phosphatase (ALP) activity assay and Alizarin Red staining were performed to observe the DKK3‑shRNA DFCs. In addition, the osteogenic differentiation of DKK3‑shRNA DFCs was analyzed by RT‑qPCR and WB. In vivo, DKK3‑shRNA DFCs seeded on hydroxyapatite/β-tricalcium phosphate (HA/TCP) scaffolds were transplanted into the subcutaneous tissue of mice with severe combined immunodeficiency, followed by hematoxylin‑eosin and Masson staining. The results confirmed that DKK3 expression was downregulated during mineral induction in rat DFCs. Lentivirus‑mediated expression of DKK3 shRNA in DFCs promoted calcified‑nodule formation, ALP activity and the expression of β‑catenin, runt‑related transcription factor 2 and osteocalcin, compared with control cells. In vivo, the implanted section presented the majority of newly formed osteoid matrices and collagen, with limited space between the HA/TCP scaffolds and matrices. In conclusion, DKK3 expression negatively regulates the osteogenic differentiation of DFCs and, conversely, downregulation of DKK3 may enhance DFC osteogenesis.


Human Platelet Lysate Maintains Stemness of Umbilical Cord-Derived Mesenchymal Stromal Cells and Promote Lung Repair in Rat Bronchopulmonary Dysplasia.

  • Guilian Liao‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

Mesenchymal stromal cells (MSCs) show potential for treating preclinical models of newborn bronchopulmonary dysplasia (BPD), but studies of their therapeutic effectiveness have had mixed results, in part due to the use of different media supplements for MSCs expansion in vitro. The current study sought to identify an optimal culture supplement of umbilical cord-derived MSCs (UC-MSCs) for BPD therapy. In this study, we found that UC-MSCs cultured with human platelet lysate (hPL-UCMSCs) were maintained a small size from Passage 1 (P1) to P10, while UC-MSCs cultured with fetal bovine serum (FBS-UCMSCs) became wide and flat. Furthermore, hPL was associated with lower levels of senescence in UC-MSCs during in vitro expansion compared with FBS, as indicated by the results of β-galactosidase staining and measures of senescence-related genes (CDKN2A, CDKN1A, and mTOR). In addition, hPL enhanced the proliferation and cell viability of the UC-MSCs and reduced their doubling time in vitro. Compared with FBS-UCMSCs, hPL-UCMSCs have a greater potential to differentiate into osteocytes and chondrocytes. Moreover, using hPL resulted in greater expression of Nestin and specific paracrine factors (VEGF, TGF-β1, FGF2, IL-8, and IL-6) in UC-MSCs compared to using FBS. Critically, we also found that hPL-UCMSCs are more effective than FBS-UCMSCs for the treatment of BPD in a rat model, with hPL leading to improvements in survival rate, lung architecture and fibrosis, and lung capillary density. Finally, qPCR of rat lung mRNA demonstrated that hPL-UCMSCs had lower expression levels of inflammatory factors (TNF-α and IL-1β) and a key chemokine (MCP-1) at postnatal day 10, and there was significant reduction of CD68+ macrophages in lung tissue after hPL-UCMSCs transplantation. Altogether, our findings suggest that hPL is an optimal culture supplement for UC-MSCs expansion in vitro, and that hPL-UCMSCs promote lung repair in rat BPD disease.


HSP90α Mediates Sorafenib Resistance in Human Hepatocellular Carcinoma by Necroptosis Inhibition under Hypoxia.

  • Yan Liao‎ et al.
  • Cancers‎
  • 2021‎

As one of the most common malignancies worldwide, Hepatocellular carcinoma (HCC) has been treated by Sorafenib, which is the first approved target drug by FDA for advanced HCC. However, drug resistance is one of the obstacles to its application. As a typical characteristic of most solid tumors, hypoxia has become a key cause of resistance to chemotherapy and radiotherapy. It is important to elucidate the underlying mechanisms of Sorafenib resistance under hypoxia. In this study, the morphological changes of hepatocellular carcinoma cells were observed by Live Cell Imaging System and Transmission Electron Microscope; Sorafenib was found to induce necroptosis in liver cancer. Under hypoxia, the distribution of necroptosis related proteins was changed, which contributed to Sorafenib resistance. HSP90α binds with the necrosome complex and promotes chaperone-mediated autophagy (CMA) degradation, which leads necroptosis blocking and results in Sorafenib resistance. The patient-derived tumor xenograft (PDX) model has been established to investigate the potential therapeutic strategies to overcome Sorafenib resistance. 17-AAG inhibited HSP90α and presented obvious reversal effects of Sorafenib resistance in vivo and in vitro. All the results emphasized that HSP90α plays a critical role in Sorafenib resistance under hypoxia and 17-AAG combined with Sorafenib is a promising therapy for hepatocellular carcinoma.


AGLR is a novel index for the prognosis of hepatocellular carcinoma patients: a retrospective study.

  • Yan Liao‎ et al.
  • BMC surgery‎
  • 2021‎

Most hepatocellular carcinoma (HCC) patients' liver function indexes are abnormal. We aimed to investigate the relationship between (alkaline phosphatase + gamma-glutamyl transpeptidase)/lymphocyte ratio (AGLR) and the progression as well as the prognosis of HCC.


CdrS Is a Global Transcriptional Regulator Influencing Cell Division in Haloferax volcanii.

  • Yan Liao‎ et al.
  • mBio‎
  • 2021‎

Transcriptional regulators that integrate cellular and environmental signals to control cell division are well known in bacteria and eukaryotes, but their existence is poorly understood in archaea. We identified a conserved gene (cdrS) that encodes a small protein and is highly transcribed in the model archaeon Haloferax volcanii. The cdrS gene could not be deleted, but CRISPR interference (CRISPRi)-mediated repression of the cdrS gene caused slow growth and cell division defects and changed the expression of multiple genes and their products associated with cell division, protein degradation, and metabolism. Consistent with this complex regulatory network, overexpression of cdrS inhibited cell division, whereas overexpression of the operon encoding both CdrS and a tubulin-like cell division protein (FtsZ2) stimulated division. Chromatin immunoprecipitation-DNA sequencing (ChIP-Seq) identified 18 DNA-binding sites of the CdrS protein, including one upstream of the promoter for a cell division gene, ftsZ1, and another upstream of the essential gene dacZ, encoding diadenylate cyclase involved in c-di-AMP signaling, which is implicated in the regulation of cell division. These findings suggest that CdrS is a transcription factor that plays a central role in a regulatory network coordinating metabolism and cell division. IMPORTANCE Cell division is a central mechanism of life and is essential for growth and development. Members of the Bacteria and Eukarya have different mechanisms for cell division, which have been studied in detail. In contrast, cell division in members of the Archaea is still understudied, and its regulation is poorly understood. Interestingly, different cell division machineries appear in members of the Archaea, with the Euryarchaeota using a cell division apparatus based on the tubulin-like cytoskeletal protein FtsZ, as in bacteria. Here, we identify the small protein CdrS as essential for survival and a central regulator of cell division in the euryarchaeon Haloferax volcanii. CdrS also appears to coordinate other cellular pathways, including synthesis of signaling molecules and protein degradation. Our results show that CdrS plays a sophisticated role in cell division, including regulation of numerous associated genes. These findings are expected to initiate investigations into conditional regulation of division in archaea.


Human umbilical cord mesenchymal stromal cells attenuate pulmonary fibrosis via regulatory T cell through interaction with macrophage.

  • Zan Tang‎ et al.
  • Stem cell research & therapy‎
  • 2021‎

Pulmonary fibrosis (PF) is a growing clinical problem with limited therapeutic options. Human umbilical cord mesenchymal stromal cell (hucMSC) therapy is being investigated in clinical trials for the treatment of PF patients. However, little is known about the underlying molecular and cellular mechanisms of hucMSC therapy on PF. In this study, the molecular and cellular behavior of hucMSC was investigated in a bleomycin-induced mouse PF model.


Decreased serum betatrophin may correlate with the improvement of obstructive sleep apnea after Roux-en-Y Gastric Bypass surgery.

  • Zhiyuan Song‎ et al.
  • Scientific reports‎
  • 2021‎

Obesity is strongly correlated with obstructive sleep apnea (OSA), and bariatric surgery can effectively treat obesity and alleviate OSA. However, the contributing factors are still unclear. We aimed to explore the relationship between betatrophin and OSA in patients undergoing Roux-en-Y gastric bypass (RYGB) surgery. Our study consisted of thirty-seven individuals with OSA and type 2 diabetes (16 males, 21 females) undergoing RYGB surgery. The polysomnography test, anthropometric results, serum betatrophin, and abdominal magnetic resonance images were evaluated both before and 1 year after RYGB surgery. Factors that may correlate with the alleviation of OSA were investigated. In our study, RYGB surgery significantly decreased apnea hypopnea index (AHI) and serum betatrophin concentration (p < 0.001). The abdominal visceral fat area, subcutaneous fat area and HOMA-IR were also significantly decreased (p < 0.001). The preoperative AHI, postoperative AHI and the change in AHI were significantly correlated with the preoperative betatrophin, postoperative betatrophin and the change in betatrophin, respectively (p < 0.05). These correlations were still significant after adjustment for other risk factors. The change in betatrophin was also independently associated with the change in minimum oxygen saturation (p < 0.001). Our data might indicate that serum betatrophin was significantly independently correlated with the improvement of OSA after bariatric surgery.


Activation of PGK1 under hypoxic conditions promotes glycolysis and increases stem cell‑like properties and the epithelial‑mesenchymal transition in oral squamous cell carcinoma cells via the AKT signalling pathway.

  • Yadong Zhang‎ et al.
  • International journal of oncology‎
  • 2020‎

Although it has been previously documented that a hypoxic environment can promote glycolysis and the malignant progression of oral squamous cell carcinoma (OSCC) cells, the specific underlying mechanism remains unclear. Phosphoglycerate kinase 1 (PGK1) has been previously reported to serve an important role in tumor metabolism. The aim of the present study was to investigate the effects of hypoxia and PGK1 on glycolysis, stem cell‑like properties and epithelial‑mesenchymal transition (EMT) in OSCC cells. Cell Counting Kit‑8 assays were performed to examine tumor cell viability under hypoxic conditions. Sphere formation, immunohistochemistry, western blotting, Transwell assays and mouse xenograft studies were performed to assess the biological effects of PGK1. Under hypoxic conditions, phosphoglycerate PGK1 expression was found to be upregulated, which resulted in the potentiation of stem cell‑like properties and enhancement of EMT. However, PGK1 knockdown reversed hypoxia‑mediated glycolysis, stem cell‑like properties, EMT in addition to inhibiting OSCC cell invasion and migration. PGK1 knockdown also inhibited tumour growth, whilst the overexpression of PGK1 was demonstrated to promote tumour growth in mouse xenograft models in vivo. Downstream, activation of the AKT signalling pathway reversed the series of changes induced by PGK1 knockdown. PGK1 expression was found to be upregulated in human OSCC tissues, which was associated with the pathological differentiation of tumours and lymph node metastasis. To conclude, results from the present study demonstrate that hypoxia can increase PGK1 expression, resulting in the promotion of glycolysis, enhancing stem cell‑like properties and EMT by activating AKT signalling in OSCC.


Intraperitoneally Delivered Mesenchymal Stem Cells Alleviate Experimental Colitis Through THBS1-Mediated Induction of IL-10-Competent Regulatory B Cells.

  • Jialing Liu‎ et al.
  • Frontiers in immunology‎
  • 2022‎

Mesenchymal stem cells (MSCs) show promising therapeutic potential in treating inflammatory bowel disease (IBD), and intraperitoneal delivery of MSCs have become a more effective route for IBD treatment. However, the underlying mechanisms are still poorly understood. Here, we found that intraperitoneally delivered MSCs significantly alleviated experimental colitis. Depletion of peritoneal B cells, but not macrophages, clearly impaired the therapeutic effects of MSCs. Intraperitoneally delivered MSCs improved IBD likely by boosting the IL-10-producing B cells in the peritoneal cavity, and a single intraperitoneal injection of MSCs could significantly prevent disease severity in a recurrent mouse colitis model, with lower proinflammation cytokines and high level of IL-10. The gene expression profile revealed that thrombospondin-1 (THBS1) was dramatically upregulated in MSCs after coculture with peritoneal lavage fluid from colitis mice. Knockout of THBS1 expression in MSCs abolished their therapeutic effects in colitis and the induction of IL-10-producing B cells. Mechanistically, THBS1 modulates the activation of transforming growth factor-β (TGF-β), which combines with TGF-β receptors on B cells and contributes to IL-10 production. Blocking the interaction between THBS1 and latent TGF-β or inhibiting TGF-β receptors (TGF-βR) significantly reversed the THBS1-mediated induction of IL-10-producing B cells and the therapeutic effects on colitis. Collectively, our study revealed that intraperitoneally delivered MSCs secreted THBS1 to boost IL-10+Bregs and control the progression and recurrence of colitis, providing new insight for the prevention and treatment of IBD.


Qingre Yiqi Method along with Oral Hypoglycemic Drugs in Treating Adults with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis.

  • Li Jiang‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2021‎

To evaluate the efficacy of the Qingre Yiqi method in the treatment of type 2 diabetes mellitus (T2DM) with meta-analysis.


Effectiveness of Telehealth Interventions for Women With Postpartum Depression: Systematic Review and Meta-analysis.

  • Liuhong Zhao‎ et al.
  • JMIR mHealth and uHealth‎
  • 2021‎

Postpartum depression (PPD) is a prevalent mental health problem with serious adverse consequences for affected women and their infants. Clinical trials have found that telehealth interventions for women with PPD result in increased accessibility and improved treatment effectiveness. However, no comprehensive synthesis of evidence from clinical trials by systematic review has been conducted.


A novel prognostic biomarker SPC24 up-regulated in hepatocellular carcinoma.

  • Pengpeng Zhu‎ et al.
  • Oncotarget‎
  • 2015‎

SPC24 is an important component of the nuclear division cycle 80 (Ndc80) kinetochore complex, which plays an essential role in the coupling of kinetochore to spindle microtubules (MTs) and the accurate segregation of chromosomes during mitosis. However, the functional role of SPC24 in hepatocellular carcinoma (HCC) remains unknown. Here, we detected the expression of SPC24 in HCC and analyzed its association with clinicopathologic features and prognosis of HCC patients. The expression of SPC24 mRNA was investigated in 212 cases of paired HCC and adjacent liver tissues by quantitative real-time PCR (qRT-PCR) and in the tissues of 20 HCC patients by semi-quantitative RT-PCR. Additionally, the expression of SPC24 protein was detected in 69 cases of HCC by immunohistochemistry (IHC) or in 2 cases of HCC tissues by Western-blotting. Furthermore, small interfering RNA (siRNA)-mediated silencing of SPC24 was employed in SMMC7721 and HepG2 human HCC cells to investigate cell proliferation, invasion and apoptosis. Survival curves were plotted using the Kaplan-Meier method, and differences in survival probability were obtained using the log-rank test. Independent predictors associated with disease-free survival (DFS) and overall survival (OS) were analyzed using the Cox proportional-hazards regression model. In this study, we showed that SPC24 was noticeably increased in HCC tissues compared to normal adjacent noncancerous tissues, at both mRNA and protein levels. High expression of SPC24 was significantly correlated with alpha-fetoprotein (AFP) (p = 0.044), median size (p = 0.030), tumor number (p = 0.019), and Barcelona-Clinic Liver Cancer (BCLC) stage (p = 0.015). Kaplan-Meier analysis showed that the DFS and OS of high SPC24 expression group was significantly shorter than that of low SPC24 expression group (p < 0.001; p = 0.001; respectively). The prognostic impact of SPC24 was further confirmed by stratified survival analysis. Importantly, multivariate analysis identified SPC24 upregualtion (p = 0.001), PVTT (p = 0.007), size of tumor > 5 cm (p < 0.001) as independent risk factors of DFS after resection, and SPC24 upregualtion (p < 0.001), PVTT (p = 0.029), size of tumor > 5 cm (p = 0.002), recurrence (p < 0.001) as independent prognostic factors for the OS of HCC patients. Additionally, siRNA-mediated silencing of SPC24 dramatically suppressed cell growth, adhesion, invasion and increased apoptosis in HCC cells. In conclusion, these results showed for the first time that SPC24 expression was significantly up-regulated in HCC, which may act as a novel prognostic biomarker for patients suffering from this deadly disease. Additionally, silence of SPC24 inhibiting HCC cell growth indicated that SPC24 may be a promising molecular target for HCC therapy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: