Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 45 papers

Natural Extracellular Electron Transfer Between Semiconducting Minerals and Electroactive Bacterial Communities Occurred on the Rock Varnish.

  • Guiping Ren‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

Rock varnish is a thin coating enriched with manganese (Mn) and iron (Fe) oxides. The mineral composition and formation of rock varnish elicit considerable attention from geologists and microbiologists. However, limited research has been devoted to the semiconducting properties of these Fe/Mn oxides in varnish and relatively little attention is paid to the mineral-microbe interaction under sunlight. In this study, the mineral composition and the bacterial communities on varnish from the Gobi Desert in Xinjiang, China were analyzed. Results of principal components analysis and t-test indicated that more electroactive genera such as Acinetobacter, Staphylococcus, Dietzia, and Pseudomonas gathered on varnish bacterial communities than on substrate rock and surrounding soils. We then explored the culture of varnish, substrate and soil samples in media and the extracellular electron transfer (EET) between bacterial communities and mineral electrodes under light/dark conditions for the first time. Orthogonal electrochemical experiments demonstrated that the most remarkable photocurrent density of 6.1 ± 0.4 μA/cm2 was observed between varnish electrode and varnish microflora. Finally, based on Raman and 16S rRNA gene-sequencing results, coculture system of birnessite and Pseudomonas (the major Mn oxide and a common electroactive bacterium in varnish) was established to study underlying mechanism. A steadily growing photocurrent (205 μA at 100 h) under light was observed with a stable birnessite after 110 h. However, only 47 μA was generated in the dark control and birnessite was reduced to Mn2+ in 13 h, suggesting that birnessite helped deliver electrons instead of serving as an electron acceptor under light. Our study demonstrated that electroactive bacterial communities were positively correlated with Fe/Mn semiconducting minerals in varnish, and diversified EET process occurred on varnish under sunlight. Overall, these phenomena may influence bacterial-community structure in natural environments over time.


Diversity of Cultivable Protease-Producing Bacteria in Laizhou Bay Sediments, Bohai Sea, China.

  • Yan Li‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

Protease-producing bacteria are widespread in ocean sediments and play important roles in degrading sedimentary nitrogenous organic materials. However, the diversity of the bacteria and the proteases involved in such processes remain largely unknown especially for communities in enclosed sea bays. Here, we investigated the diversity of the extracellular protease-producing bacteria and their protease types in Laizhou Bay. A total of 121 bacterial isolates were obtained from sediment samples in 7 sites and their protease types were characterized. The abundance of cultivable protease-producing bacteria was about 104 CFU g-1 of sediment. Phylogenetic analysis based on 16S rRNA gene sequences suggest that the isolates belonged to 17 genera from 4 phyla including Firmicutes, Actinobacteria, Proteobacteria and Bacteroidetes, and mainly dominated by the genera Pseudoalteromonas (40.5%), Bacillus (36.3%), and Photobacterium (5.8%). The diversity and community structure varied among different sampling sites but no significant correlation was observed with soil sediment's characteristics. Enzyme activity and inhibition tests further revealed that all isolates secreted proteases that were inhibited by serine and/or metalloprotease inhibitors, and a smaller proportion was inhibited by inhibitors of cysteine and/or aspartic proteases. Furthermore, all isolates effectively degraded casein and/or gelatin with only a few that could hydrolyze elastin, suggesting that the bacteria were producing different kinds of serine proteases or metalloproteases. This study provided novel insights on the community structure of cultivable protease-producing bacteria near the Yellow River estuary of an enclosed sea bay.


Emergence of NDM-1- and CTX-M-3-Producing Raoultella ornithinolytica in Human Gut Microbiota.

  • Shuang Wang‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

Raoultella ornithinolytica is an opportunistic pathogen of the Enterobacteriaceae family and has been implicated in nosocomial infections in recent years. The aim of this study was to characterize a carbapenemase-producing R. ornithinolytica isolate and three extended-spectrum β-lactamase (ESBL)-producing R. ornithinolytica isolates from stool samples of adults in a rural area of Shandong Province, China. The species were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and 16S rDNA sequence analysis. Antimicrobial susceptibility test showed that all four isolates were multidrug-resistant (MDR). The whole genome sequence (WGS) of these isolates was determined using an Illumina HiSeq platform, which revealed MDR-related genes. The S1 nuclease-pulsed-field gel electrophoresis (S1-PFGE) was used to characterize the plasmids carried by the R. ornithinolytica isolates. The bla NDM-1 and bla CTX-M-3 genes were probed using Southern blotting, which confirmed the location of both genes on the same plasmid with molecular weight of 336.5-398.4 kb. The transferability of bla NDM-1 and bla CTX-M was also confirmed by conjugation assays. Finally, BLAST analysis of both genes showed that mobile genetic elements were associated with the spread of drug resistance genes. Taken together, we report the presence of conjugative bla NDM-1 and bla CTX-M plasmids in R. ornithinolytica isolates from healthy humans, which indicate the possibility of inter-species transfer of drug resistance genes. To the best of our knowledge, this is the first study to isolate and characterize carbapenemase-producing R. ornithinolytica and ESBL-producing R. ornithinolytica isolates from healthy human hosts.


Characterization and Comparison of Intestinal Bacterial Microbiomes of Euschistus heros and Piezodorus guildinii Collected in Brazil and the United States.

  • Matheus Sartori Moro‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Background: Herbivorous insects are one of the main biological threats to crops. One such group of insects, stink bugs, do not eat large amounts of tissue when feeding on soybean, but are damaging to the quality of the seed yield as they feed on green developing seeds leading to poorly marketable harvests. In addition to causing physical damage during sucking-feeding activities, the insects can also transmit microbial pathogens, leading to even greater yield loss. Conducting surveys of the insect intestinal microbiome can help identify possible pathogens, as well as detail what healthy stink bug digestive systems have in common. Methods: We used the conserved V4 region of the 16S rRNA gene to characterize the bacterial microbiome of the red-banded stink bug Piezodorus guildinii collected in Brazil and the United States, as well as the neotropical brown stink bug Euschistus heros collected in Brazil. Results: After quality filtering of the data, 192 samples were kept for analyses: 117 samples from P. guildinii covering three sites in Brazil and four sites in the United States, and 75 samples for E. heros covering 10 sites in Brazil. The most interesting observations were that the diversity and abundance of some bacterial families were different in the different ecoregions of Brazil and the United States. Conclusion: Some families, such as Acetobacteraceae, Bacillaceae, Moraxellaceae, Enterobacteriaceae, and Rhodocyclaceae, may be related to the better adaptation in some localities in providing nutrients, break down cellulose, detoxify phytochemicals, and degrade organic compounds, which makes it difficult to control these species.


Ectopic Colonization and Immune Landscapes of Periodontitis Microbiota in Germ-Free Mice With Streptozotocin-Induced Type 1 Diabetes Mellitus.

  • Xin Shen‎ et al.
  • Frontiers in microbiology‎
  • 2022‎

A two-way relationship between diabetes and periodontitis has been discussed recently. Periodontitis microbiota might affect the immune homeostasis of diabetes, but the molecular mechanism of their interactions is still not clear. The aims of this study were to clarify the possible immune regulatory effects of periodontitis microbiota on diabetes and the correlation between immunomodulation and ectopic colonization. A model of germ-free mice with streptozotocin-induced type 1 diabetes mellitus (T1D), which was orally inoculated with mixed saliva samples for 2 weeks, was used in this study. Those mice were randomly divided into two groups, namely, SP (where the T1D mice were orally inoculated with mixed saliva samples from periodontitis patients) and SH (where the T1D mice were orally inoculated with mixed saliva samples from healthy subjects). Ectopic colonization of saliva microbiota was assessed using culture-dependent method and Sanger sequencing, and the composition of gut microbiota was analyzed using 16S rRNA gene sequencing. Changes in 15 types of immune cells and six cytokines either from the small intestine or spleen were detected by multicolor flow cytometry. The correlation between gut microbiota and immune cells was evaluated by redundancy analysis. Although periodontitis microbiota minorly colonized the lungs, spleens, and blood system, they predominantly colonized the gut, which was mainly invaded by Klebsiella. SH and SP differed in beta diversity of the gut bacterial community. Compared to SH, microbial alteration in small intestine occurred with an increase of Lacticaseibacillus, Bacillus, Agathobacter, Bacteroides, and a decrease of Raoultella in SP. More types of immune cells were disordered in the spleen than in the small intestine by periodontitis microbiota, mainly with a dramatical increase in the proportion of macrophages, plasmacytoid dendritic cells (pDCs), monocytes, group 3 innate lymphoid cells, CD4-CD8- T cells and Th17 cells, as well as a decline of αβT cells in SP. Cytokines of IFNγ, IL17, and IL22 produced by CD4 + T cells as well as IL22 produced by ILCs of small intestine rose in numbers, and the intestinal and splenic pDCs were positively regulated by gut bacterial community in SP. In conclusion, periodontitis microbiota invasion leads to ectopic colonization of the extra-oral sites and immune cells infiltration, which might cause local or systemic inflammation. Those cells are considered to act as a "bridge" between T1D and periodontitis.


Emergence of IncX3 Plasmid-Harboring bla NDM- 5 Dominated by Escherichia coli ST48 in a Goose Farm in Jiangsu, China.

  • Ziyi Liu‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

Twelve carbapenem-resistant Escherichia coli strains were obtained from goose farms in Jiangsu, China. These isolates were resistant to multiple antimicrobials, and positive for the bla NDM- 5. The carbapenem-resistance of all strains mediated by bla NDM- 5 were successfully conjugated to E. coli J53. S1-PFGE and WGS results showed bla NDM- 5 was located on IncX3 conjugative plasmids with a size of ca. 46 kb. All bla NDM- 5-bearing IncX3 plasmids shared the same genetic context almost identical to pNDM_MGR194-bla NDM- 5 and pNDM-QD28-bla NDM- 5 reported in India and China, respectively. The twelve strains belonged to three STs, in which the dominant type of E. coli isolated from breeding goose farm carrying bla NDM- 5 was ST48. The emergence of bla NDM- 5-bearing strains in goose farms and the clonal transmission of E. coli within the breeding goose farm highlighted the potential reservoir of carbapenemase genes in waterfowl farming system, which may further contaminate environments and pose a threat to public health. Comprehensive surveillance of carbapenem-resistant bacteria in goose farms warrants further study to evaluate the underlying risks.


Biodiversity and Geographic Distribution of Rhizobia Nodulating With Vigna minima.

  • Guohua Liu‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Vigna minima is a climbing annual plant widely distributed in barren wilderness, grass land, and shrub bush of China and other countries such as Japan. However, the rhizobia nodulating with this plant has never been systematically studied. In order to reveal the biodiversity of nodulating rhizobia symbiosis with V. minima, a total of 874 rhizobium isolates were obtained from root nodules of the plant spread in 11 sampling sites of Shandong Peninsula, China, and they were designated as 41 haplotypes in the genus Bradyrhizobium based upon recA sequence analyses. By multilocus sequence analysis (MLSA) of five housekeeping genes (dnaK, glnII, gyrB, recA, and rpoB), the 41 strains representing different recA haplotypes were classified into nine defined species and nine novel genospecies. Bradyrhizobium elkanii, Bradyrhizobium ferriligni, and Bradyrhizobium pachyrhizi were the predominant and universally distributed groups. The phylogeny of symbiotic genes of nodC and nifH showed similar topology and phylogenetic relationships, in which all the representative strains were classified into two clades grouped with strains nodulating with Vigna spp., demonstrating that Vigna spp. shared common nodulating groups in the natural environment. All the representative strains formed nodules with V. minima in a nodulation test performed in green house conditions. The correlation between V. minima nodulating rhizobia and soil characteristics analyzed by CANOCO indicates that available nitrogen, total nitrogen, and organic carbon in the soil samples were the main factors affecting the distribution of rhizobia isolated in this study. This study systematically uncovered the biodiversity and distribution characteristics of V. minima nodulating rhizobia for the first time, which provided novel information for the formation of the corresponding rhizobium community.


Identification of Enantiomeric Byproducts During Microalgae-Mediated Transformation of Metoprolol by MS/MS Spectrum Based Networking.

  • Min Lv‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Metoprolol (MPL) is a chiral β-blocker ubiquitously detected in various environments due to its low to moderate removal in wastewater treatment plants. This study was conducted to test the potential of using microalgae to degrade emerging contaminant MPL and to characterize the enantiomeric enrichment during MPL degradation by microalgae. The results showed that PO43-- P, NO3-- N and MPL could be simultaneously removed in the synthetic effluent by the targeted microalgae species, indicating microalgae were promising in wastewater treatment. Stereoselectivity was observed during MPL degradation by microalgae, with R-form enrichment. A marginal linear relationship between MPL degradation and enantiomeric enrichment was observed, implying that the enantiomeric tool, used as a quantitative indicator of biodegradation, could possibly be applied in MPL degradation by microalgae. An efficient liquid chromatograph tandem high resolution mass spectrometry (LC-HRMS/MS) chiral analytical method was developed to identify transformation products (TPs). The results showed that MS/MS spectral similarity networking could be used as a powerful tool to quickly identify unknown TPs. A total of 6 pairs of chiral TPs were identified, among which two new TPs of MPL including hydroxy{4-[2-hydroxy-3-(isopropylamino)propoxy]phenyl}acetic acid (α-HMPLA) and 4-[2-Hydroxy-3-(isopropylamino)propoxy]benzaldehyde (DMPLD) were firstly reported, and proposed transformation pathways of MPL by microalgae were given. Considering the paired TPs detected and that the degradation of the two enantiomers followed first order kinetics, the two enantiomers likely had the same degradation mechanism.


Andrographolide Prevents EV-D68 Replication by Inhibiting the Acidification of Virus-Containing Endocytic Vesicles.

  • Dongyin Wang‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Enterovirus D68 (EV-D68) has emerged as a significant respiratory pathogen that can cause severe respiratory disease and acute neurologic disease. At present, there are no approved antiviral agents or vaccines for EV-D68. In this study, we demonstrate that andrographolide (ADO), an active component of Andrographis paniculata, exerts substantial antiviral activity against EV-D68 infection. ADO treatment dramatically inhibited EV-D68 RNA replication (EC50 = 3.45 μM) and protein synthesis without producing significant cytotoxicity at virucidal concentrations. ADO-treated cells did not show any changes in host immune activation, EV-D68 attachment, or viral 5' UTR activity. Using a pH-sensitive fluorescent indicator system for endocytosis in living cells, we found that ADO prevented the acidification of endocytic vesicles after receptor-mediated endocytosis. Finally, we showed that ADO inhibited the viral replication of circulating isolated EV-D68 strains. In summary, our results demonstrate that ADO suppresses EV-D68 replication by targeting the maturation of virus-containing endosomes of EV-D68. This mechanism represents a promising strategy for drug development.


TLR3 Regulated Poly I:C-Induced Neutrophil Extracellular Traps and Acute Lung Injury Partly Through p38 MAP Kinase.

  • Tingting Gan‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Acute lung injury (ALI) is the leading cause of morbidity and mortality in critically ill patients. Neutrophil extracellular traps (NETs) have been well documented in the ALI model of bacterial infection. In the present study, we demonstrated that poly I:C could induce pulmonary NETs. Upon poly I:C intratracheal inoculation, neutrophil infiltration in the bronchoalveolar lavage fluid (BALF) was significantly increased. Furthermore, the inflammatory cytokines IL-1β, IL-6, and TNF-α in the lung were also significantly elevated. Neutrophil depletion abolished NETs and decreased both neutrophil infiltration and IL-1β in the lung. As expected, DNase I, an inhibitor of MPO and NADPH, decreased pulmonary inflammation and NETs. Blocking of the poly I:C receptor TLR3 reduced lung inflammation and NETs. The MAPK kinase inhibitor p38 diminished the formation of NETs and restored the expression of the tight junction protein claudin-5 in the mouse lung when challenged with poly I:C. In summary, poly I:C induced the formation of pulmonary NETs and ALI, which may be associated with the activation of p38 MAPK and the decreased expression of claudin-5.


De Novo Analysis of Wolfiporia cocos Transcriptome to Reveal the Differentially Expressed Carbohydrate-Active Enzymes (CAZymes) Genes During the Early Stage of Sclerotial Growth.

  • Shaopeng Zhang‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

The sclerotium of Wolfiporia cocos has been used as an edible mushroom and/or a traditional herbal medicine for centuries. W. cocos sclerotial formation is dependent on parasitism of the wood of Pinus species. Currently, the sclerotial development mechanisms of W. cocos remain largely unknown and the lack of pine resources limit the commercial production. The CAZymes (carbohydrate-active enzymes) play important roles in degradation of the plant cell wall to provide carbohydrates for fungal growth, development, and reproduction. In this study, the transcript profiles from W. cocos mycelium and 2-months-old sclerotium, the early stage of sclerotial growth, were specially analyzed using de novo sequencing technology. A total of 142,428,180 high-quality reads of mycelium and 70,594,319 high-quality reads of 2-months-old sclerotium were obtained. Additionally, differentially expressed genes from the W. cocos mycelium and 2-months-old sclerotium stages were analyzed, resulting in identification of 69 CAZymes genes which were significantly up-regulated during the early stage of sclerotial growth compared to that of in mycelium stage, and more than half of them belonged to glycosyl hydrolases (GHs) family, indicating the importance of W. cocos GHs family for degrading the pine woods. And qRT-PCR was further used to confirm the expression pattern of these up-regulated CAZymes genes. Our results will provide comprehensive CAZymes genes expression information during W. cocos sclerotial growth at the transcriptional level and will lay a foundation for functional genes studies in this fungus. In addition, our study will also facilitate the efficient use of limited pine resources, which is significant for promoting steady development of Chinese W. cocos industry.


An Exogenous Surfactant-Producing Bacillus subtilis Facilitates Indigenous Microbial Enhanced Oil Recovery.

  • Peike Gao‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

This study used an exogenous lipopeptide-producing Bacillus subtilis to strengthen the indigenous microbial enhanced oil recovery (IMEOR) process in a water-flooded reservoir in the laboratory. The microbial processes and driving mechanisms were investigated in terms of the changes in oil properties and the interplay between the exogenous B. subtilis and indigenous microbial populations. The exogenous B. subtilis is a lipopeptide producer, with a short growth cycle and no oil-degrading ability. The B. subtilis facilitates the IMEOR process through improving oil emulsification and accelerating microbial growth with oil as the carbon source. Microbial community studies using quantitative PCR and high-throughput sequencing revealed that the exogenous B. subtilis could live together with reservoir microbial populations, and did not exert an observable inhibitory effect on the indigenous microbial populations during nutrient stimulation. Core-flooding tests showed that the combined exogenous and indigenous microbial flooding increased oil displacement efficiency by 16.71%, compared with 7.59% in the control where only nutrients were added, demonstrating the application potential in enhanced oil recovery in water-flooded reservoirs, in particular, for reservoirs where IMEOR treatment cannot effectively improve oil recovery.


Differential Proteomic Profiles of Pleurotus ostreatus in Response to Lignocellulosic Components Provide Insights into Divergent Adaptive Mechanisms.

  • Qiuyun Xiao‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

Pleurotus ostreatus is a white rot fungus that grows on lignocellulosic biomass by metabolizing the main constituents. Extracellular enzymes play a key role in this process. During the hydrolysis of lignocellulose, potentially toxic molecules are released from lignin, and the molecules are derived from hemicellulose or cellulose that trigger various responses in fungus, thereby influencing mycelial growth. In order to characterize the mechanism underlying the response of P. ostreatus to lignin, we conducted a comparative proteomic analysis of P. ostreatus grown on different lignocellulose substrates. In this work, the mycelium proteome of P. ostreatus grown in liquid minimal medium with lignin, xylan, and carboxymethyl cellulose (CMC) was analyzed using the complementary two-dimensional gel electrophoresis (2-DE) approach; 115 proteins were identified, most of which were classified into five types according to their function. Proteins with an antioxidant function that play a role in the stress response were upregulated in response to lignin. Most proteins involving in carbohydrate and energy metabolism were less abundant in lignin. Xylan and CMC may enhanced the process of carbohydrate metabolism by regulating the level of expression of various carbohydrate metabolism-related proteins. The change of protein expression level was related to the adaptability of P. ostreatus to lignocellulose. These findings provide novel insights into the mechanisms underlying the response of white-rot fungus to lignocellulose.


BcCFEM1, a CFEM Domain-Containing Protein with Putative GPI-Anchored Site, Is Involved in Pathogenicity, Conidial Production, and Stress Tolerance in Botrytis cinerea.

  • Wenjun Zhu‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

We experimentally isolated and characterized a CFEM protein with putative GPI-anchored site BcCFEM1 in Botrytis cinerea. BcCFEM1 contains a CFEM (common in several fungal extracellular membrane proteins) domain with the characteristic eight cysteine residues at N terminus, and a predicted GPI modification site at C terminus. BcCFEM1 was significantly up-regulated during early stage of infection on bean leaves and induced chlorosis in Nicotiana benthamiana leaves using Agrobacterium infiltration method. Targeted deletion of BcCFEM1 in B. cinerea affected virulence, conidial production and stress tolerance, but not growth rate, conidial germination, colony morphology, and sclerotial formation. However, over expression of BcCFEM1 did not make any observable phenotype change. Therefore, our data suggested that BcCFEM1 contributes to virulence, conidial production, and stress tolerance. These findings further enhance our understanding on the sophisticated pathogenicity of B. cinerea beyond necrotrophic stage, highlighting the importance of CFEM protein to B. cinerea and other broad-host-range necrotrophic pathogens.


Isolation, Diversity, and Antimicrobial and Immunomodulatory Activities of Endophytic Actinobacteria From Tea Cultivars Zijuan and Yunkang-10 (Camellia sinensis var. assamica).

  • Wei Wei‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Endophytic actinobacteria exist widely in plant tissues and are considered as a potential bioresource library of natural products. Tea plants play important roles in human health and in the lifestyles of Asians, especially the Chinese. However, little is known about the endophytic actinobacteria of tea plants. In this study, 16 actinobacteria of 7 different genera and 28 actinobacteria of 8 genera were isolated and analyzed by 16S rRNA gene sequencing from tea cultivars of Zijuan and Yunkang-10 (Camellia sinensis var. assamica), respectively. The diversity of actinobacteria species from Zijuan were higher in July than December (6 vs. 3 genera), but the diversity of species from Yunkang-10 were higher in December than July (7 vs. 3 genera). No actinobacteria isolates were obtained from any tea cultivar in September. Ten isolates from Yunkang-10 exhibited antimicrobial activity against at least one human pathogenic microorganism (Staphylococcus epidermidis, Shigella flexneri, and Escherichia coli), but none of the isolates from Zijuan exhibited antimicrobial activities. Fourteen strains were further exammined the genes of polyketide synthetase (PKS)-I and PKS-II and non-ribosomal peptide synthetase (NRPS). Brevibacterium sp. YXT131 from Yunkang-10 showed strong inhibitory activity against S. epidermidis, Sh. flexneri, and E. coli, and PKS-I and PKS-II and NRPS genes were obtained from the strain. In in vitro assays, extracts from 14 actinobacteria that were tested for antibiotic biosynthetic genes showed no inhibition of concanavalin A (ConA)-induced murine splenocyte proliferation. In in vivo assays, the crude extract of YXT131 modulated the immune response by decreasing the proinflammatory cytokines interleukin (IL)-12/IL-23 p40 and tumor necrosis factor (TNF)-α in the serum of mice. These results confirm that endophytic actinobacteria from tea plants might be an undeveloped bioresource library for active compounds.


Soybean continuous cropping affects yield by changing soil chemical properties and microbial community richness.

  • Yan Li‎ et al.
  • Frontiers in microbiology‎
  • 2022‎

In agroecosystems, different cropping patterns cause changes in soil physicochemical properties and thus in microbial communities, which in turn affect crop yields. In this study, the yields of soybean continuous cropping for 5 years (C5), 10 years (C10), and 20 years (C20) and of soybean-corn rotational cropping (R) treatments were determined, and samples of the tillage layer soil were collected. High-throughput sequencing technology was used to analyze the diversity and composition of the soil bacterial and fungal communities. The factors influencing microbial communities, along with the effects of these communities and those of soil chemical indexes on yield, were further evaluated. The results showed that the community richness index of bacteria was higher in C20 than in R and that of fungi was highest in C5. The differences in the bacterial and fungal communities diversity indexes were not significant among the different continuous cropping treatments, respectively. The soil microbial community composition of all continuous cropping treatments differed significantly from R. The dominant bacterial phylum was Actinobacteriota and the dominant fungal phylum was Ascomycota. The relative abundance of Fusarium did not differ significantly among the continuous cropping treatments, while that of the plant pathogen fungi Lectera sp., Plectosphaerella sp., and Volutella sp. increased with continuous cropping years. Soil pH, SOM, N, and TP had significant effects on both bacterial and fungal communities, and TK and C/N had highly significant effects on fungal communities. The yield of C5 was significantly lower than that of R, and the differences in yield between C10, C20, and R were not significant. TN, TP, and pH had significant effects on yield, and fungal community abundance had a greater negative effect on yield than bacterial community abundance.


Emergence of Carbapenem- and Tigecycline-Resistant Proteus cibarius of Animal Origin.

  • Yan Li‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

The emergence of tet(X) and carbapenemase genes in Enterobacterales pose significant challenges to the treatment of infectious diseases. Convergence of these two categories of genes in an individual pathogen would deteriorate the antimicrobial resistance (AMR) crisis furthermore. Here, tigecycline-resistant Enterobacterales strains were isolated and detected with carbapenemase genes, characterized by antimicrobial susceptibility testing, PCR, conjugation assay, whole genome sequencing, and bioinformatics analysis. Three tigecycline-resistant isolates consisting of one plasmid-mediated tet(X4)-bearing Escherichia fergusonii and two chromosomal tet(X6)-bearing Proteus cibarius were recovered from chicken feces. The tet(X4) was located on a conjugative IncX1 plasmid pHNCF11W-tetX4 encoding the identical structure as reported tet(X4)-bearing IncX1 plasmids in Escherichia coli. Among two P. cibarius strains, tet(X6) was located on two similar chromosomal MDR regions with genetic contexts IS26-aac(3)-IVa-aph(4)-Ia-ISEc59-tnpA-tet(X6)-orf-orf-ISCR2-virD2-floR-ISCR2-glmM-sul2 and IS26-aac(3)-IVa-aph(4)-Ia-ISEc59-tnpA-tet(X6)-orf-orf-ISCR2-glmM-sul2. Apart from tet(X6), P. cibarius HNCF44W harbored a novel transposon Tn6450b positive for bla NDM- 1 on a conjugative plasmid. This study probed the genomic basis of three tet(X)-bearing, tigecycline-resistant strains, one of which coharbored bla NDM- 1 and tet(X6), and identified P. cibarius as the important reservoir of tet(X6) variants. Emergence of P. cibarius encoding both bla NDM- 1 and tet(X6) reveals a potential public health risk.


Notch Signaling Ligand Jagged1 Enhances Macrophage-Mediated Response to Helicobacter pylori.

  • Junjie Wen‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Helicobacter pylori (H. pylori) is one of the gram-negative bacteria that mainly colonize the stomach mucosa and cause many gastrointestinal diseases, such as gastritis, peptic ulcer, and gastric cancer. Macrophages play a key role in eradicating H. pylori. Recent data have shown that Notch signaling could modulate the activation and bactericidal activities of macrophages. However, the role of Notch signaling in macrophages against H. pylori remains unclear. In the present study, in the co-culture model of macrophages with H. pylori, the inhibition of Notch signaling using γ-secretase decreased the expression of inducible nitric oxide synthase (iNOS) and its product, nitric oxide (NO), and downregulated the secretion of pro-inflammatory cytokine and attenuated phagocytosis and bactericidal activities of macrophages to H. pylori. Furthermore, we identified that Jagged1, one of Notch signaling ligands, was both upregulated in mRNA and protein level in activated macrophages induced by H. pylori. Clinical specimens showed that the number of Jagged1+ macrophages in the stomach mucosa from H. pylori-infected patients was significantly higher than that in healthy control. The overexpression of Jagged1 promoted bactericidal activities of macrophages against H. pylori and siRNA-Jagged1 presented the opposite effect. Besides, the addition of exogenous rJagged1 facilitated the pro-inflammatory mediators of macrophages against H. pylori, but the treatment of anti-Jagged1 neutralizing antibody attenuated it. Taken together, these results suggest that Jagged1 is a promoting molecule for macrophages against H. pylori, which will provide insight for exploring Jagged1 as a novel therapeutic target for the control of H. pylori infection.


Long non-coding RNA expression in PBMCs of patients with active pulmonary tuberculosis.

  • Guoli Li‎ et al.
  • Frontiers in microbiology‎
  • 2023‎

Mycobacterium tuberculosis (Mtb) infection is the primary cause of the chronic infectious illness tuberculosis (TB). Long non-coding RNAs (lncRNAs) are functional RNA molecules that cannot be translated into proteins and play a crucial role in regulating the immune system's innate and adaptive responses. It has been demonstrated that the dysregulation of lncRNA expression is associated with various human diseases. However, the mechanism underlying the involvement of so many lncRNAs in the immune response to TB infection remains unclear. The objective of our current study was to identify a number of significantly differentially expressed lncRNAs in peripheral blood mononuclear cells (PBMCs) from TB patients and to select the most indicative lncRNAs as potential biomarkers for active pulmonary tuberculosis.


The Kinome of Edible and Medicinal Fungus Wolfiporia cocos.

  • Wei Wei‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

Wolfiporia cocos is an edible and medicinal fungus that grows in association with pine trees, and its dried sclerotium, known as Fuling in China, has been used as a traditional medicine in East Asian countries for centuries. Nearly 10% of the traditional Chinese medicinal preparations contain W. cocos. Currently, the commercial production of Fuling is limited because of the lack of pine-based substrate and paucity of knowledge about the sclerotial development of the fungus. Since protein kinase (PKs) play significant roles in the regulation of growth, development, reproduction, and environmental responses in filamentous fungi, the kinome of W. cocos was analyzed by identifying the PKs genes, studying transcript profiles and assigning PKs to orthologous groups. Of the 10 putative PKs, 11 encode atypical PKs, and 13, 10, 2, 22, and 11 could encoded PKs from the AGC, CAMK, CK, CMGC, STE, and TLK Groups, respectively. The level of transcripts from PK genes associated with sclerotia formation in the mycelium and sclerotium stages were analyzed by qRT-PCR. Based on the functions of the orthologs in Sclerotinia sclerotiorum (a sclerotia-formation fungus) and Saccharomyces cerevisiae, the potential roles of these W. cocos PKs were assigned. To the best of our knowledge, our study is the first identification and functional discussion of the kinome in the edible and medicinal fungus W. cocos. Our study systematically suggests potential roles of W. cocos PKs and provide comprehensive and novel insights into W. cocos sclerotial development and other economically important traits. Additionally, based on our result, genetic engineering can be employed for over expression or interference of some significant PKs genes to promote sclerotial growth and the accumulation of active compounds.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: