Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 90 papers

Nano genome altas (NGA) of body wide organ responses.

  • Bingbing Wu‎ et al.
  • Biomaterials‎
  • 2019‎

Nanoparticles are widely developed and utilized in the pharmaceutical and medicine industry, as they can be easily distributed and infiltrated throughout the whole body once administered; however, the body wide effect of nanoparticles infiltration is still unclear. In this study, we developed a new strategy of Nano Genome Altas (NGA) of multi-tissues to study the acute Body-wide-Organ-Transcriptomic response to nanomaterials. Hydroxyapatite(HA)-Nanoparticles (HANPs) was applied in this study as an example both in vitro and in vivo. Results showed that the effect of HANPs is organ specific and mainly related to immune responses in spleen and muscle, proliferation in spleen and bone, stress and apoptosis in spleen and PBMC, ion transport in spleen, kidney, and liver tissues, metabolism in heart, spleen, and muscle, as well as tissue specific epigenetic and signal pathways. In vitro experiments also confirmed that the effects of HANPs on different tissue stem cells were tissue specific. Thus, Nano Genome Altas can provide a body-wide view of the transcriptomic response of multiple organs and tissue specific stem cells to HANPs; it could also be useful for optimizing HANPs and other nano-delivery systems.


Resveratrol Sensitizes Carfilzomib-Induced Apoptosis via Promoting Oxidative Stress in Multiple Myeloma Cells.

  • Qian Li‎ et al.
  • Frontiers in pharmacology‎
  • 2018‎

The proteasome inhibitor is a target therapy for multiple myeloma (MM) patients, which has increased the overall survival rate of multiple myeloma in clinic. However, relapse and toxicity are major challenges for almost all MM patients. Thus, there is an urgent need for an effective and less toxic combination therapy. Here, we demonstrated that a natural compound, resveratrol (RSV) displayed anti-proliferative activity in a dose- and time-dependent manner in a panel of MM cell lines. More importantly, a low concentration of RSV was synergistic with a low dose of the proteasome inhibitor carfilzomib (CFZ) to induce apoptosis in myeloma cells. Further studies showed that mitochondria was a key regulatory site after RSV/CFZ combination treatment. RSV induced the release of second mitochondria-derived activator of caspase (Smac) in a dose-dependent manner and kept the Smac in a high level after combination with CFZ. Also, RSV was additive with CFZ to increase reactive oxygen species (ROS) production. Moreover, a stress sensor SIRT1, with deacetylase enzyme activity, was remarkably downregulated after RSV/CFZ combination, thereby significantly decreasing its target protein, survivin in MM cells. Simultaneously, autophagy was invoked after RSV/CFZ combination treatment in myeloma cells. Further inhibition of autophagy could increase more ROS production and apoptosis, indicating a close linkage between autophagy and proteasome to modulate the oxidative stress. Together, these findings suggest that induction of multiple stress responses after RSV/CFZ combination is a major mechanism to synergistically inhibit MM cell growth and reduce the toxicity of CFZ in MM cells. This study also provides an important rationale for the clinic to consider an autophagy inhibitor for the combination therapy in MM patients.


Luteolin inhibits multi-heavy metal mixture-induced HL7702 cell apoptosis through downregulation of ROS-activated mitochondrial pathway.

  • Yafei Wang‎ et al.
  • International journal of molecular medicine‎
  • 2018‎

With the rapid economic development in recent years, China is facing a great challenge due to heavy metal pollution. The heavy metals may enter the human body through ingestion of aqua products to cause great health risks. In the present study, the inhibitory effects of luteolin on the combined toxicity of multi-heavy metals (including zinc, manganese, lead, copper, cadmium, mercury, chromium and nickel) were investigated in HL7702 hepatocyte cells. An MTT assay demonstrated that 20 µM luteolin significantly alleviated the multi-heavy metal mixture-induced cell death and morphological changes. Furthermore, 20 µM luteolin significantly inhibited multi-heavy metal mixture-induced reactive oxygen species (ROS) generation, lipid peroxidation (malondialdehyde content) and caused a decrease in adenosine triphosphate levels in HL7702 cells. A JC-1 staining assay indicated that 20 µM luteolin inhibited the mitochondrial membrane potential-reducing effect of the multi-heavy metal mixture. Apoptotic assays revealed that the multi-heavy metal mixture induced HL7702 cell apoptosis in a dose-dependent manner, which was significantly inhibited by 20 µM luteolin. Western blot analysis indicated that addition of luteolin to the multi‑heavy metal mixture significantly alleviated cytochrome c release from the mitochondria into the cytosol. In addition, 20 µM luteolin had a significant inhibitory effect on multi-heavy metal mixture-induced cleavage of caspase-9, caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 protein. Immunofluorescence staining demonstrated that addition of luteolin significantly alleviated caspase-3 cleavage induced by the multi-heavy metal mixture. The present results suggested luteolin exerts its inhibitory effects of on multi-heavy metal mixture induced cell apoptosis through downregulation of the ROS-activated mitochondrial pathway.


Multiscale Statistical Analysis of Massive Corrosion Pits Based on Image Recognition of High Resolution and Large Field-of-View Images.

  • Yafei Wang‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2020‎

In the present study, a new multiscale method is proposed for the statistical analysis of spatial distribution of massive corrosion pits, based on the image recognition of high resolution and large field-of-view (montage) optical images. Pitting corrosion for high strength pipeline steel exposed to sodium chloride solution was observed using an optical microscope. Montage images of the corrosion pits were obtained, with a single image containing a large number of corrosion pits. The diameters and locations of all the pits were determined simultaneously using an image recognition algorithm, followed by statistical analysis of the two-dimensional spatial point pattern. The multiscale spatial distributions of pits were analyzed by dividing the montage image into a number of different windows. The results indicate the clear dependence of distribution features on the spatial scales. The proposed method can provide a better understanding of the pit growth from the perspective of multiscale spatial evolution.


NeuroD1 induces microglial apoptosis and cannot induce microglia-to-neuron cross-lineage reprogramming.

  • Yanxia Rao‎ et al.
  • Neuron‎
  • 2021‎

The regenerative capacity of neurons is limited in the central nervous system (CNS), with irreversible neuronal loss upon insult. In contrast, microglia exhibit extraordinary capacity for repopulation. Matsuda et al. (2019) recently reported NeuroD1-induced microglia-to-neuron conversion, aiming to provide an "unlimited" source to regenerate neurons. However, the extent to which NeuroD1 can exert cross-lineage reprogramming of microglia (myeloid lineage) to neurons (neuroectodermal lineage) is unclear. In this study, we unexpectedly found that NeuroD1 cannot convert microglia to neurons in mice. Instead, NeuroD1 expression induces microglial cell death. Moreover, lineage tracing reveals non-specific leakage of similar lentiviruses as previously used for microglia-to-neuron conversion, which confounds the microglia-to-neuron observation. In summary, we demonstrated that NeuroD1 cannot induce microglia-to-neuron cross-lineage reprogramming. We here propose rigid principles for verifying glia-to-neuron conversion. This Matters Arising paper is in response to Matsuda et al. (2019), published in Neuron.


Inositol Polyphosphate 4-Phosphatase Type II Is a Tumor Suppressor in Multiple Myeloma.

  • Yafei Wang‎ et al.
  • Frontiers in oncology‎
  • 2021‎

Inositol polyphosphate-4-phosphatase type II (INPP4B) has been identified as a tumor suppressor, while little is known about its expression and function in multiple myeloma (MM). In this study, we evaluated the expression of INPP4B in 28 cases of newly diagnosed MM patients and 42 cases of extramedullary plasmacytoma (EMP) patients compared with normal plasma cells and found that low INPP4B expression was correlated with poor outcomes in MM patients. Moreover, expression of INPP4B in seven MM cell lines was all lower than that in normal plasma cells. In addition, loss of function of INPP4B promoted cell proliferation in MM cells; however, gain of function suppressed MM cells proliferation and arrested the cell cycle at G0/G1 phage. Meanwhile, knockdown of INPP4B enhanced resistance, but overexpression promoted sensitivity to bortezomib treatment in MM cells. Mechanistically, we found that INPP4B exerted its role via inhibiting the phosphorylation of Akt at lysine 473 but not threonine 308, which attenuated the activation of the PI3K/Akt/mammalian target of rapamycin (mTOR) signaling pathway. Therefore, we identified an inhibitory effect of INPP4B in MM, and our findings suggested that loss of INPP4B expression is a risk factor of aggressive MM.


A Rapid Detection Method for Fungal Spores from Greenhouse Crops Based on CMOS Image Sensors and Diffraction Fingerprint Feature Processing.

  • Yafei Wang‎ et al.
  • Journal of fungi (Basel, Switzerland)‎
  • 2022‎

The detection and control of fungal spores in greenhouse crops are important for stabilizing and increasing crop yield. At present, the detection of fungal spores mainly adopts the method of combining portable volumetric spore traps and microscope image processing. This method is problematic as it is limited by the small field of view of the microscope and has low efficiency. This study proposes a rapid detection method for fungal spores from greenhouse crops based on CMOS image sensors and diffraction fingerprint feature processing. We built a diffraction fingerprint image acquisition system for fungal spores of greenhouse crops and collected diffraction fingerprint images of three kinds of fungal spores. A total of 13 diffraction fingerprint features were selected for the classification of fungal spores. These 13 characteristic values were divided into 3 categories, main bright fringe, main dark fringe, and center fringe. Then, these three features were calculated to obtain the Peak to Center ratio (PCR), Valley to Center ratio, and Peak to Valley ratio (PVR). Based on these features, logistics regression (LR), K nearest neighbor (KNN), random forest (RF), and support vector machine (SVM) classification models were built. The test results show that the SVM model has a better overall classification performance than the LR, KNN, and RF models. The average accuracy rate of the recognition of three kinds of fungal spores from greenhouse crops under the SVM model was 92.72%, while the accuracy rates of the LR, KNN, and RF models were 84.97%, 87.44%, and 88.72%, respectively. The F1-Score value of the SVM model was higher, and the overall average value reached 89.41%, which was 11.12%, 7.18%, and 5.57% higher than the LR, KNN, and RF models, respectively. Therefore, the method proposed in this study can be used for the remote identification of three fungal spores which can provide a reference for the identification of fungal spores in greenhouse crops and has the advantages of low cost and portability.


Posttranslational modification of Aurora A-NSD2 loop contributes to drug resistance in t(4;14) multiple myeloma.

  • Hongmei Jiang‎ et al.
  • Clinical and translational medicine‎
  • 2022‎

t(4;14)(p16;q32) cytogenetic abnormality renders high level of histone methyltransferase NSD2 in multiple myeloma (MM) patients, and predicts poor clinical prognosis, but mechanisms of NSD2 in promoting chemoresistance have not been well elucidated.


Blockade of FGF2/FGFR2 partially overcomes bone marrow mesenchymal stromal cells mediated progression of T-cell acute lymphoblastic leukaemia.

  • Chen Tian‎ et al.
  • Cell death & disease‎
  • 2022‎

The development of acute lymphoblastic leuakemia (ALL) is partly attributed to the effects of bone marrow (BM) microenvironment, especially mesenchymal stromal cells (MSCs), which interact bilaterally with leukaemia cells, leading to ALL progression. In order to find MSCs-based microenvironment targeted therapeutic strategies, Notch1-induced T-cell ALL (T-ALL) mice models were used and dynamic alterations of BM-MSCs with increased cell viability during T-ALL development was observed. In T-ALL mice derived stroma-based condition, leukaemia cells showed significantly elevated growth capacity indicating that MSCs participated in leukaemic niche formation. RNA sequence results revealed that T-ALL derived MSCs secreted fibroblast growth factor 2 (FGF2), which combined with fibroblast growth factor receptor 2 (FGFR2) on leukaemia cells, resulting in activation of PI3K/AKT/mTOR signalling pathway in leukaemia cells. In vitro blocking the interaction between FGF2 and FGFR2 with BGJ398 (infigratinib), a FGFR1-3 kinase inhibitor, or knockdown FGF2 in MSCs by interference caused deactivation of PI3K/AKT/mTOR pathway and dysregulations of genes associated with cell cycle and apoptosis in ALL cells, leading to decrease of leukaemia cells. In mouse model received BGJ398, overall survival was extended and dissemination of leukaemia cells in BM, spleen, liver and peripheral blood was decreased. After subcutaneous injection of primary human T-ALL cells with MSCs, tumour growth was suppressed when FGF2/FGFR2 was interrupted. Thus, inhibition of FGF2/FGFR2 interaction appears to be a valid strategy to overcome BM-MSCs mediated progression of T-ALL, and BGJ398 could indeed improve outcomes in T-ALL, which provide theoretical basis of BGJ398 as a BM microenvironment based therapeutic strategy to control disease progression.


Cellular senescence affects energy metabolism, immune infiltration and immunotherapeutic response in hepatocellular carcinoma.

  • Biao Gao‎ et al.
  • Scientific reports‎
  • 2023‎

Aging is an inevitable consequence of life, characterized by a progressive decline in tissue and organ function and an increased risk of death. There is growing evidence that aging is closely related to tumor development and immune regulation. However, in hepatocellular carcinoma, the relationship between cellular senescence and immune infiltration, energy metabolism, chemokines, and immunotherapeutic response is unclear and needs further study. We first analyzed 274 cellular senescence-associated genes by the NMF algorithm and identified two cellular senescence-associated clusters. Subsequently, we compared the differences between the two clusters, in terms of immune infiltration, energy metabolism, chemokines, and immunotherapeutic response to treatment. We further constructed risk models using cellular senescence-associated signature genes that could effectively identify the two subpopulations. Finally, we validated the validity and robustness of the risk model using an external dataset. We found significant differences in survival prognosis between two cellular senescence-associated clusters. In addition, we found significant differences in immune cell infiltration, expression of energy metabolism-related genes, expression of chemokine-related genes, expression of immune checkpoint-related genes, Tumor Immune Dysfunction and Exclusion between the two clusters. Also, a scoring system associated with cellular senescence was developed and validated as an independent prognostic indicator. It was validated as an independent prognostic factor and immunotherapeutic predictor for HCC. It was validated as an independent prognostic factor and immunotherapeutic predictor for HCC. The cellular senescence-related scoring system was validated as an independent prognostic factor and immunotherapy predictor for HCC, and patients with low CSS were characterized by prolonged survival time. Our study confirmed the relationship between cellular senescence and immune cell infiltration, energy metabolism, chemokines, expression of immune checkpoint-related genes, and response to immunotherapy. This enhances our understanding of cellular senescence and tumor immune microenvironment, energy metabolism, chemokines, and provides new insights to improve immunotherapy outcomes in HCC patients. It provides new insights to improve the outcome of immunotherapy in HCC patients.


Comparative Proteomic and Morpho-Physiological Analyses of Maize Wild-Type Vp16 and Mutant vp16 Germinating Seed Responses to PEG-Induced Drought Stress.

  • Songtao Liu‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Drought stress is a major abiotic factor compromising plant cell physiological and molecular events, consequently limiting crop growth and productivity. Maize (Zea mays L.) is among the most drought-susceptible food crops. Therefore, understanding the mechanisms underlying drought-stress responses remains critical for crop improvement. To decipher the molecular mechanisms underpinning maize drought tolerance, here, we used a comparative morpho-physiological and proteomics analysis approach to monitor the changes in germinating seeds of two incongruent (drought-sensitive wild-type Vp16 and drought-tolerant mutant vp16) lines exposed to polyethylene-glycol-induced drought stress for seven days. Our physiological analysis showed that the tolerant line mutant vp16 exhibited better osmotic stress endurance owing to its improved reactive oxygen species scavenging competency and robust osmotic adjustment as a result of greater cell water retention and enhanced cell membrane stability. Proteomics analysis identified a total of 1200 proteins to be differentially accumulated under drought stress. These identified proteins were mainly involved in carbohydrate and energy metabolism, histone H2A-mediated epigenetic regulation, protein synthesis, signal transduction, redox homeostasis and stress-response processes; with carbon metabolism, pentose phosphate and glutathione metabolism pathways being prominent under stress conditions. Interestingly, significant congruence (R2 = 81.5%) between protein and transcript levels was observed by qRT-PCR validation experiments. Finally, we propose a hypothetical model for maize germinating-seed drought tolerance based on our key findings identified herein. Overall, our study offers insights into the overall mechanisms underpinning drought-stress tolerance and provides essential leads into further functional validation of the identified drought-responsive proteins in maize.


Multiplex ligation-dependent probe amplification identifies copy number changes in normal and undetectable karyotype MDS patients.

  • Jing Ma‎ et al.
  • Annals of hematology‎
  • 2021‎

Chromosomal abnormalities play an important role in classification and prognostication of myelodysplastic syndrome (MDS) patients. However, more than 50% of low-risk MDS patients harbor a normal karyotype. Recently, multiplex ligation-dependent probe amplification (MLPA) has emerged as an effective and robust method for the detection of cytogenetic aberrations in MDS patients. To characterize the subset of MDS with normal karyotype or failed chromosome banding analysis, we analyzed 144 patient samples with normal karyotype or undetectable through regular chromosome banding analysis, which were subjected to parallel comparison via fluorescence in situ hybridization (FISH) and MLPA. MLPA identifies copy number changes in 16.7% of 144 MDS patients, and we observed a significant difference in overall survival (OS) (median OS: undefined vs 27 months, p=0.0071) in patients with normal karyotype proved by MLPA versus aberrant karyotype cohort as determined by MLPA. Interestingly, patients with undetectable karyotype via regular chromosome banding indicated inferior outcome. Collectively, MDS patients with normal or undetectable karyotype via chromosome banding analysis can be further clarified by MLPA, providing more prognostic information that benefit for individualized therapy.


Long-Read Metagenomics of Marine Microbes Reveals Diversely Expressed Secondary Metabolites.

  • Ranran Huang‎ et al.
  • Microbiology spectrum‎
  • 2023‎

Microbial secondary metabolites play crucial roles in microbial competition, communication, resource acquisition, antibiotic production, and a variety of other biotechnological processes. The retrieval of full-length BGC (biosynthetic gene cluster) sequences from uncultivated bacteria is difficult due to the technical constraints of short-read sequencing, making it impossible to determine BGC diversity. Using long-read sequencing and genome mining, 339 mainly full-length BGCs were recovered in this study, illuminating the wide range of BGCs from uncultivated lineages discovered in seawater from Aoshan Bay, Yellow Sea, China. Many extremely diverse BGCs were discovered in bacterial phyla such as Proteobacteria, Bacteroidota, Acidobacteriota, and Verrucomicrobiota as well as the previously uncultured archaeal phylum "Candidatus Thermoplasmatota." The data from metatranscriptomics showed that 30.1% of secondary metabolic genes were being expressed, and they also revealed the expression pattern of BGC core biosynthetic genes and tailoring enzymes. Taken together, our results demonstrate that long-read metagenomic sequencing combined with metatranscriptomic analysis provides a direct view into the functional expression of BGCs in environmental processes. IMPORTANCE Genome mining of metagenomic data has become the preferred method for the bioprospecting of novel compounds by cataloguing secondary metabolite potential. However, the accurate detection of BGCs requires unfragmented genomic assemblies, which have been technically difficult to obtain from metagenomes until recently with new long-read technologies. We used high-quality metagenome-assembled genomes generated from long-read data to determine the biosynthetic potential of microbes found in the surface water of the Yellow Sea. We recovered 339 highly diverse and mostly full-length BGCs from largely uncultured and underexplored bacterial and archaeal phyla. Additionally, we present long-read metagenomic sequencing combined with metatranscriptomic analysis as a potential method for gaining access to the largely underutilized genetic reservoir of specialized metabolite gene clusters in the majority of microbes that are not cultured. The combination of long-read metagenomic and metatranscriptomic analyses is significant because it can more accurately assess the mechanisms of microbial adaptation to the environment through BGC expression based on metatranscriptomic data.


Efficacy and safety of generic pomalidomide plus low-dose dexamethasone in relapsed or refractory multiple myeloma: a multicenter, open-label, single-arm trial.

  • Huixing Zhou‎ et al.
  • Annals of hematology‎
  • 2024‎

This multicenter, open-label, single-arm trial (ClinicalTrials.gov, NCT05236621) was conducted to confirm the efficacy and safety of generic pomalidomide plus dexamethasone in Chinese patients with relapsed or refractory multiple myeloma (RRMM). Total 79 eligible RRMM patients were planned to be included. Patients were treated with generic pomalidomide (4 mg daily on days 1-21, orally) and low-dose dexamethasone (40 mg/day on days 1, 8, 15, and 22, orally; 20 mg for patients aged > 75 years) in 28-day cycles until disease progression with a maximum treatment duration of 2 years. The primary endpoint is the overall response rate (ORR) assessed by the independent review committee per the 2016 International Myeloma Working Group guidelines. A total of 85 eligible patients were included in this study from 32 centers in China, with a median age of 62.0 (range, 39-76) years, a median prior line of therapy of 4 (range, 1-16), and 41.2% patients with high-risk cytogenetics. The ORR was 38.8% (95% confidence interval (CI), 28.44-50.01). The disease control rate was 67.1% (95% CI, 56.02-76.87), meanwhile, the median progression-free survival was 5.55 months (95% CI, 3.68-7.52). Among the treatment-related adverse events (TRAEs), infective pneumonia (17.6%) was the most frequent non-hematologic adverse event, while a decrease in neutrophil count (52.9%) was the most common grade ≥ 3 TRAE. The study results indicated that the generic pomalidomide demonstrated consistent efficacy and a safety profile similar to the branded pomalidomide when combined with low-dose dexamethasone in Chinese RRMM patients.Registration number ClinicalTrials.gov NCT05236621, retrospectively registered on February 11, 2022.


HiHo-AID2: boosting homozygous knock-in efficiency enables robust generation of human auxin-inducible degron cells.

  • Shiqian Li‎ et al.
  • Genome biology‎
  • 2024‎

Recent developments in auxin-inducible degron (AID) technology have increased its popularity for chemogenetic control of proteolysis. However, generation of human AID cell lines is challenging, especially in human embryonic stem cells (hESCs). Here, we develop HiHo-AID2, a streamlined procedure for rapid, one-step generation of human cancer and hESC lines with high homozygous degron-tagging efficiency based on an optimized AID2 system and homology-directed repair enhancers. We demonstrate its application for rapid and inducible functional inactivation of twelve endogenous target proteins in five cell lines, including targets with diverse expression levels and functions in hESCs and cells differentiated from hESCs.


RcPAL, a key gene in lignin biosynthesis in Ricinus communis L.

  • Jiannong Lu‎ et al.
  • BMC plant biology‎
  • 2019‎

Castor (Ricinus communis L.) is an important seed oil crop. Castor oil is a highly demanded oil for several industrial uses. Current castor bean varieties suffer from low productivity and high risk of insect pests and diseases. High productive and pest/disease resistance varieties are needed. Lignin has been associated to the resistance for pest, disease and lodging. Lignin is produced from several metabolites of the phenylpropanoid pathway. PAL is the key enzyme of the phenylpropanoid pathway. The gene PAL may assist in the improvement of resistance of castor bean.


Global Transcriptomic Analysis Reveals Insights into the Response of 'Etrog' Citron (Citrus medica L.) to Citrus Exocortis Viroid Infection.

  • Yafei Wang‎ et al.
  • Viruses‎
  • 2019‎

Citrus exocortis viroid (CEVd) is the causal agent of citrus exocortis disease. We employed CEVd-infected 'Etrog' citron as a system to study the feedback regulation mechanism using transcriptome analysis in this study. Three months after CEVd infection, the transcriptome of fresh leaves was analyzed, and 1530 differentially expressed genes were detected. The replication of CEVd in citron induced upregulation of genes encoding key proteins that were involved in the RNA silencing pathway such as Dicer-like 2, RNA-dependent RNA polymerase 1, argonaute 2, argonaute 7, and silencing defective 3, as well as those genes encoding proteins that are related to basic defense responses. Many genes involved in secondary metabolite biosynthesis and chitinase activity were upregulated, whereas other genes related to cell wall and phytohormone signal transduction were downregulated. Moreover, genes encoding disease resistance proteins, pathogenicity-related proteins, and heat shock cognate 70 kDa proteins were also upregulated in response to CEVd infection. These results suggest that basic defense and RNA silencing mechanisms are activated by CEVd infection, and this information improves our understanding of the pathogenesis of viroids in woody plants.


c-Myc plays part in drug resistance mediated by bone marrow stromal cells in acute myeloid leukemia.

  • Bing Xia‎ et al.
  • Leukemia research‎
  • 2015‎

Acute myeloid leukemia (AML) is a malignant and aggressive disease not sensitive to chemotherapy. The dynamic interaction between AML cells and bone marrow (BM) microenvironment plays a critical role in response of this disease to chemotherapy. It is reported that mesenchymal stromal cells (MSC) are essential component of bone marrow microenvironment which affects the survival of AML cells. The aim of our research is to elucidate the mechanism of drug resistance of AML cells associated with MSC. We found that adhesion of AML cell lines U937, KG1a and primary AML cells to MSC inhibited cytotoxic drug-induced apoptosis. Western blot showed that c-Myc of AML cells cocultured with stroma was up-regulated. Treatment with 10058-F4, a small molecule inhibitor of MYC-MAX heterodimerization, or c-Myc siRNA significantly induced apoptosis. Western blot analysis further showed that inhibition of c-Myc induced expression of caspases-3, cleavage of PARP and reduced expression of Bcl-2, Bcl-xL and vascular endothelial growth factor (VEGF). Thus, we conclude that MSCs protected leukemia cells from apoptosis, at least in part, through c-Myc dependent mechanisms, and that c-Myc contributed to microenvironment-mediated drug resistance in AML. In summary, we declared that c-Myc is a potential therapeutic target for overcoming drug resistance in AML.


Transcriptome sequencing reveals novel Citrus bark cracking viroid (CBCVd) variants from citrus and their molecular characterization.

  • Yafei Wang‎ et al.
  • PloS one‎
  • 2018‎

Citrus bark cracking viroid (CBCVd), previously called Citrus viroid IV, belongs to the genus Cocadviroid within the family Pospiviroidae. CBCVd has been identified as an important causative agent in citrus and hops. In this study, we obtained the full-length genomes of different variants of all detected citrus viroids from Pakistan through transcriptome sequencing. Different CBCVd variants were first found in Pakistan. These newly discovered Pakistani CBCVd variants were provisionally called "CBCVd-LSS" for their low sequence similarity (80.9%-88.9%) with the CBCVd RefSeq sequence (NC_003539). The two most predominant CBCVd sequences from Pakistan had the closest identity, 90.6% and 87.9%, with two CBCVd sequences isolated from hops. Identification and molecular characterization of CBCVd from citrus in Pakistan and China were also reported. The length of CBCVd from China ranged from 282 to 286 nucleotides, while that of the one from Pakistan ranged from 273 to 277 nucleotides. Based on genetic diversity and phylogenetic analysis, two main CBCVd clades were identified. CBCVd sequences from Pakistan, China, and other countries were further divided into six sub-clades. Sequence alignment revealed some nucleotide changes between these sub-clades, and analysis indicated that several mutations could significantly affect the primary and secondary structure of the viroid. Our results indicated that the CBCVd sequences from Pakistan and China were significantly different with respect to genome and secondary structure and Pakistan might be one of the independent geographical origins of CBCVd worldwide.


Maraviroc inhibits SARS-CoV-2 multiplication and s-protein mediated cell fusion in cell culture.

  • Kenneth H Risner‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2022‎

In an effort to identify therapeutic intervention strategies for the treatment of COVID-19, we have investigated a selection of FDA-approved small molecules and biologics that are commonly used to treat other human diseases. A investigation into 18 small molecules and 3 biologics was conducted in cell culture and the impact of treatment on viral titer was quantified by plaque assay. The investigation identified 4 FDA-approved small molecules, Maraviroc, FTY720 (Fingolimod), Atorvastatin and Nitazoxanide that were able to inhibit SARS-CoV-2 infection. Confocal microscopy with over expressed S-protein demonstrated that Maraviroc reduced the extent of S-protein mediated cell fusion as observed by fewer multinucleate cells in the context of drug-treatment. Mathematical modeling of drug-dependent viral multiplication dynamics revealed that prolonged drug treatment will exert an exponential decrease in viral load in a multicellular/tissue environment. Taken together, the data demonstrate that Maraviroc, Fingolimod, Atorvastatin and Nitazoxanide inhibit SARS-CoV-2 in cell culture.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: