Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Methoxyphenylethynyl, methoxypyridylethynyl and phenylethynyl derivatives of pyridine: synthesis, radiolabeling and evaluation of new PET ligands for metabotropic glutamate subtype 5 receptors.

  • Meixiang Yu‎ et al.
  • Nuclear medicine and biology‎
  • 2005‎

We have synthesized three different PET ligands to investigate the physiological function of metabotropic glutamate subtype 5 receptors (mGluR5) in vivo: 2-[(11)C]methyl-6-(2-phenylethynyl)pyridine ([(11)C]MPEP), 2-(2-(3-[(11)C]methoxyphenyl)ethynyl)pyridine ([(11)C]M-MPEP) and 2-(2-(5-[(11)C]methoxypyridin-3-yl)ethynyl)pyridine ([(11)C]M-PEPy). [(11)C]Methyl iodide was used to label the compounds under basic conditions, and a Pd(0) catalyst was applied to label [(11)C]MPEP in a Stille coupling reaction. In vivo microPET imaging studies of the functional accumulation of radiolabeled ligands were conducted in 35 rats (Sprague-Dawley, 8 weeks old male, weight of 300 g). Specific binding was tested using pre-administration of unlabeled mGluR5 antagonist 2-methyl-6-(2-phenylethynyl)pyridine (MPEP) (10 mg/kg iv 5 min before radioactivity injection). In the radiolabeling of [(11)C]MPEP, [(11)C]M-MPEP and [(11)C]M-PEPy, a specific radioactivity of 700-1200 mCi/micromol and over 97% radiochemical purity were obtained. The microPET studies showed these three radiolabeled mGluR5 antagonists having the highest binding in the olfactory bulb followed by striatum, hippocampus and cortex. Pre-administration of the mGluR5 antagonist MPEP induced a 45.1% decrease in [(11)C]MPEP binding, a 59.7% decrease in [(11)C]M-MPEP binding and an 84.6% decrease in [(11)C]M-PEPy binding in the olfactory bulb at 5 min. The feasibility of synthesizing high-affinity and high-selectivity ligands for mGluR5 receptors and their suitability as PET imaging ligands for mGluR5 receptors in vivo are demonstrated.


High-fat feeding-induced hyperinsulinemia increases cardiac glucose uptake and mitochondrial function despite peripheral insulin resistance.

  • Anisha A Gupte‎ et al.
  • Endocrinology‎
  • 2013‎

In obesity, reduced cardiac glucose uptake and mitochondrial abnormalities are putative causes of cardiac dysfunction. However, high-fat diet (HFD) does not consistently induce cardiac insulin resistance and mitochondrial damage, and recent studies suggest HFD may be cardioprotective. To determine cardiac responses to HFD, we investigated cardiac function, glucose uptake, and mitochondrial respiration in young (3-month-old) and middle-aged (MA) (12-month-old) male Ldlr(-/-) mice fed chow or 3 months HFD to induce obesity, systemic insulin resistance, and hyperinsulinemia. In MA Ldlr(-/-) mice, HFD induced accelerated atherosclerosis and nonalcoholic steatohepatitis, common complications of human obesity. Surprisingly, HFD-fed mice demonstrated increased cardiac glucose uptake, which was most prominent in MA mice, in the absence of cardiac contractile dysfunction or hypertrophy. Moreover, hearts of HFD-fed mice had enhanced mitochondrial oxidation of palmitoyl carnitine, glutamate, and succinate and greater basal insulin signaling compared with those of chow-fed mice, suggesting cardiac insulin sensitivity was maintained, despite systemic insulin resistance. Streptozotocin-induced ablation of insulin production markedly reduced cardiac glucose uptake and mitochondrial dysfunction in HFD-fed, but not in chow-fed, mice. Insulin injection reversed these effects, suggesting that insulin may protect cardiac mitochondria during HFD. These results have implications for cardiac metabolism and preservation of mitochondrial function in obesity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: